Abstract

We present CRISP, an extensible efficient wire protocol for incremental
SAT solving. The protocol allows applications to communicate with a
remote or local server over tcp or unix domain sockets. It efficiently
transfers data andminimizes unnecessary round trips. It is simple, and
easily extensible to domains such as optimisation, quantifiers, proofs, etc.
An open source reference implementation is available and discussion for
future versions and extensions takes place in public.



CRISP: The CompRessed Incremental SAT
Protocol

Scott Cotton, IRI France, SAS
July 7, 2016

1 Introduction

SAT solvers are traditionally linked against applications, and very often the
application context yields a high ratio of very easy problems to medium or hard
problems. ”Big gun” SAT solvers are often NOT used in applications because of
the code complexity and/or hardware requirements. Additionally, SAT solvers
are usually written in C or C+4++, whereas higher level application contexts
may involve a software stack with many languages and components. The inter-
language bindings create integration and computational overhead. To address
these issues and at once provide a useful piece of infrastructure for cloud and
distributed deployment, we designed CRISP, the CompRessed Incremental SAT
Protocol.

The base protocol can be seen as a wire protocl client-server version of the
standard incremental SAT solving interface originally defined in [1].

The rest of this paper is organised as follows. Section 2 details the wire
protocol. Section 3 defines the generic extension mechanism and two useful
extensions (optimisation and assumption based multi-plexing). Section 4 gives
some experimental data. Section 5 concludes.

2 The Protocol
2.1 Wire Data

Every piece of data communicated between the client and the server takes the
logical form of a uint32, an unsigned 32 bit value.

This space houses literals and communication instructions/directives be-
tween the client and the server. These instructions/directives are called protocol
points in the following.

We only use 17 protocol points, but to enable extensions, we reserve 256
integers for protocol points, at the high end of the range representable by uint32.
The rest of the space is used to house variables and literals, coded in the tradition
of SAT solvers (see Adding below).



2.2 Flow Overview
Here we present an overview of the interactions in CRISP.
1. Client negotiates connection with server

2. Client then requests ({add) or (assume)) as many times as it likes. The
Server does not respond to these requests.

3. Client then requests (solve). This enters a loop between the client and the
server on the same connection as follows:

(a) Client: (solve)
(b) Server: {(unknown)|(sat)|(unsat}|(end)
(¢) Client: (continue)|{end)

4. Client sends ({model) or (modelfor) or (failed) or (failedfor)) as many
times as it likes. Each time it sends one of these operations, the server
responds with the requested data.

5. Optionally, the client may send (reset). In this case, the server forgets
added clauses and the flow goes to item 2 above.

6. Client sends (quit), both ends disconnect
In the above, step 3,
(b,c) repeats until server sends (sat), (unsat), or (end)

Thus step 3 can be represented by the regular expresion below, where vertical
alignment represents concatenation.

client:(solve)
(server:(unknown) (client:{continue)|client:(end))*
(server:(end)|(sat)|(unsat))

The meaning of the server sending (unknown) is that it doesn’t know the
answer and is willing and able to make more progress solving the problem.
The maning of the server initiating (end) (in response to client (solve) or client
(continue)) that it unable or unwilling to make more progress on solving the
problem and does not know the answer.

In this loop, the client does not need to wait between reads and writes, since
presumably the server is doing the solving. On the other hand, the server needs
not try to respond so fast as to eat up unnecessary resources So the server may
do this at an appropriate frequency.

If we call the regular expression above S, the allowable overall (error-free)
flow interactions can be represented by the regular expression

1((254*)*57)*6



There are also error conditions, corresponding to further constraints on the
allowable flows; these simply abort the sequence and cause a disconnect; these
are not represented in this overview but rather are detailed below.

2.3 Varuint Encoding

The wire format then uses var-uint encoding (a stream of bytes each of which
indicates whether it is the last with 1 bit and uses 7bits to encode the non-zero
LSBs of the value). This is a standard variable width encoding which compresses
values which tend to be small. This works as follows.

Let u; for ¢ in 0..31 be the bits of an unsigned 32 bit int u. The encoding of
u is a slice of bytes e = egey . . ..

e0&127 houses the 7 most LSB of u: here denoted wug. 7
If uw > 7 =0, then the length of e is 1.

Otherwise e1&127 houses ur7. . 14.
If w > 14 = 0, then the length of e is 2.

Otherwise e2&127 houses u14. 21.

This continues for all 32 bits. Also, For every element e; of e except the last,
e;&128 # 0.

The server may decode a stream of varuint32 data and then, for each value
v, test whether it is a command/code point by testing

v>= (2% —1) - 255

if true, v is a command, if false, v is a literal.

2.3.1 Rational

We distinguish the special value '0’ as a literal to zero-terminate clauses and lists
of assumptions or lists of failed literals. This is conventional and only requires
1 byte in varuint format. Commands happen with much less frequency in the
protocol when there is a potential need to send lots of data fast (eg loading a
big dimacs). Commands are large values and hence have larger varuint size.

2.4 Protocol Points

We reserve 256 code points for extensions to learning, optimisation, etc. In this
proposal we have only the following op codes



(add) (2% —1)
(assume) (232 -1)-1
(solve) (232 —1) -2
(continue) | (232 —1)—3
(end) (232 -1)—4
(error) (232 -1) -5
(failed) (232 -1)-6
(failedfor) | (232 —1)—7
(model) (232 -1)-8
(modelfor) | (232 -1)-9
(sat) (232 -1)-10
(unsat) 22 -1)-1
(unknown) | (232 —1) — 12
{quit) (232 —1)—13
(reset) (232 -1)—14
(key) (232 -1)-15
(ext) (22 - 1) - 16

The remaining protocol points are for specific extensions.

2.5 Variables and Literals

Variables are Boolean (can be either true/false) and each variable is associated
with a uint32. A "literal” in propositional logic is just a variable or the logical
negation of a variable. CRISP uses standard SAT-solver encoding of variables
and literals.

If a variable is indicated by some uint32, say x, then a literal m over x is

r<l1 if m is positive
(r < 1)|1 if m is negative

Since we have uint32 coding, and 256 coding points, the maximum variable
representable in the protocol is

(2% — 1) — 256) > 1

or equivalently

2147483519

2.6 Connection negotiation
Upon connecting, the server replies with

1. 7CRISP” (as 5 uint32s coding the ASCII values of ’C’, 'R, 'T’, ’S’, "P’);

2. followed by a uint32 v indicating the protocol version number which is
comprised of a major version and a minor version. The major version is
the upper 8 MSB of v and the minor protocol version is the 24 LSB of v.



Some servers may want to protect access by requring a key. If they do this,
then they can simply wait for the first op from the client. If the first op is not
(key), then the server can disconnect the client.

Clients connecting to (key)-passed servers can send the (key) op followed by
the key length in terms of uint32 atoms (the key must be 4-byte aligned). Then
the client sends the key. After receiving the key, the server could just disconnect
if it doesn’t accept the client.

2.7 Adding

Adding adds permanent constraints to the solver on the server side. Each con-
straint is in the form of a clause, which is a disjunction of literals.

When the client adds clauses, it sends the (add) op followed by a list of
clauses, where each clause is a null-terminated list of literals. When it is done
adding clauses, it sends a (end).

The server does not respond to (add) or (end) ops.

2.8 Assuming

When the client makes assumptions, it sends the (assume) op followed by a null
terminated list of literals. The server does not respond to this op.

The server takes into account the assumptions temporarily, only for the next
call to solve. Subsequent calls to solve after the next call are not effected.

2.9 Solving

Solving is the only part of the protocol which involves several round trips be-
tween the client and the server.

After the client sends (solve), it reads from the server in a blocking read until
the server sends a response. The response is either (sat), (unsat), (unknown),
or (end).

If the response is (unknown), then the client must respond with either
(continue) or (end). If the client sends {continue), the protocol enters the same
state as if the client had just sent (solve). If the client sends (end), the protocol
exits the (solve) state; the client can add more clauses or make more assumptions
and try to solve again (or quit).

If the server response is (sat),(unsat), or (end) then client must not respond
with (continue) or (end). Instead, the client may optionally request models if
the response was (sat), or optionally request failed assumptions if the response
was (unsat). In any event, the client may continue to (add) or (assume) or may
(quit).

2.10 Models

Models are valuations of variables in a problem which satisfy the permanent
constraints and assumptions in the previous (solve) interaction. CRISP sup-



ports 2 mechanisms for models: partial and complete models, corresponding
respectively to the (modelfor) and (model) operators.

The (model) and (modelfor) operators can only be sent if the previous (solve)
operator ended with a (sat) operator from the server and no (add) or (assume)
has taken place since. Otherwise, the server sends (error) and disconnectes.

Complete models are obtained using the (model) operator. The client sends
(model) and the server responds with a truth value for every variable, in the
order of variable index/id 1,2,3,.... up until the maximum variable used in any
added clause or assumption.

The encoding of the truth values is the same for partial and complete models,
and is described below.

Partial models are obtained by using the (modelfor) operator. The client
sends (modelfor) followed by a null terminated list of literals. The server re-
sponds with the truth value for each of these literals in the same order specified
specified by the client.

In both (model) and (modelfor), the list of truth values is encoded by the
server as follows. First, the server sends a uint32 indicating how many uint32s
are to be sent subsequently to communicate the model. Then:

Let N be the length of the list, and let let M be [N/32]. Then M/32 uint32
values are sent by the server. Let u; be the i’th such value. The truth value for
element j of the list is

Thus models are communicated in a standard compressed bitvector repre-
sentation with 32 bit word size.

2.11 Failed Assumptions

Failed assumptions are a subset of the assumptions from the last (solve) se-
quence which are sufficient to render the problem unsat. Like the (model) and
(modelfor) operators, there are 2 failed operators, (failed) and (failedfor).

(failed) retrieves a sufficient subset of all previously assumed literals to render
the last problem posed to (solve) unsat.

(failedfor) specifies a list of assumptions which are of interest to the client.
The server responds with the maximal subset of this list which intersects what
would be returned by (failed).

Thus, when the client sends (failedfor) it follows this operator with a null
terminated list of literals. But when the client sends (failed) it immediately
waits the response from the server.

In both cases, the server replies with a null terminated list of literals. If the
server replies to (failedfor), the list of literals in the response from the server
must respect the order of the list provided by the client in (failedfor).



2.12 Error Conditions

Errors are always sent from the server to the client. Each (error) op is followed
by a single uint32 value, which encodes more information about the error.
Anytime the server responds with an (error), the server subsequently simply
closes the connection.
The following are common errors:

1. If the varuint encoding encodes a number outside the uint32 range then
the server responds with an error. The error code is 1.

2. If the client has this error reading from the server, then it must disconnect.

3. If a client requests a model or partial model and the previous solve dis not
end with (sat), the server responds with an error. The error code is 2.

4. If a client requests failed assumptions and the previous solve was not unsat,
the server responds with an error, the error code is 3.

5. If a client requests failed assumptions or model and an (add) or an (assume)
has taken place since the last (solve), the server responds with an error
whose code is 4.

6. If a client sends an unknown opcode, the server responds with an error
whose code is 5.

7. If the client reads an unknown opcode, it must immediately disconnect.
8. If a protocol opcode is read when data is expected, we have error code 6.

9. Other generic server errors are called ”internal server errors”, and have
error code 7.

2.13 Reseting

The (reset) opcode causes the server to forget all added clauses and assumptions,
i.e to go to the state just after connection negotiation. This is useful in a
wire protocol because the overhead of creating a connection is higher than the
overhead of creating/initializing an incremental SAT solver via APIL.

3 Extensions

In this section, we mention several possible extensions to CRISP. We have not
yet implemented these, but rather present them to show how easy it is to adapt
CRISP to different Boolean reasoning and optimisation tasks and solving re-
quirements.



3.1 Extension negotiation

The (ext) opcode indicates a request from the client to find available extensions
on the server. Each extension has

1. A unique 16 bit identifier.
2. A list of opcodes.

Thus, in response to {(ext), the server responds with a null terminated list

E= [(io,no), (il,nl), .. ]

where each (i,n) is placed into a uint32 (¢ is the 16 MSB, n is the 16 LSB).
Value (ij,n;) indicates that extension with identifier ¢; has n; opcodes.

To map extension opcodes to server instances, the client then computes that
opcode ¢ (zero indexed) in extension at position 7 in E is

(232 — 1) — 255 + Ej<mj +c

This allows different servers to have different sets of extensions all packed

into the 240 extension opcode slots, and it allows clients to map such opcodes
1

3.2 Optimisation

There are many forms of Boolean optimisation, such as MaxSAT where the
problem is to find the maximal number of satisfiable clauses, possibly weighted.
Other forms include pseuodo-Boolean optimisation, in which constraints and
objectives can express the number of literals in clauses which are true. All of
these forms can be translated to each other, see for example [3] or [2].

In this extension, we present a tiny, minimalistic incremental Boolean op-
timisation interface which can also be used to solve a wide variety of Boolean
optimisation forms provided the problems are coded accordingly.

This extension defines 5 new opcodes, in the following order.

1. (addmax). This opcode adds a literal to the set of literals for which the
solver searches for a maximal satisfying assignment. It is used by the client
anywhere where (add) or (assume) can be used. There is no response from
the server.

2. (clearmax) This opcode clears the set of literals to maximize. It is used by
the client anywhere (add) or (assume) can be used. There is no response
from the server.

IThis mechanism does require that extensions have unique identifiers. We recommend
filing an issue with the Gini project on github to request extension identifiers and definitions.
Short of that, one could always just choose a random number for the a new extension identifier
to minimize the chances of collision.



3. (nextlower) This opcode directs the solver to find the next lower bound
on the number of maximisation literals which can be satisfied. It has
semantics like (solve) in that it enters a communication loop between the
client and the server. That loop behaves exactly as in (solve), except it
replaces (sat) with (better) (see below).

4. (nextupper) This opcode directs the server to find the next upper bound
on the number of maximisation literals which can be satisfied. Otherwise,
it operates exactly like (nextlower).

5. (better). This opcode replaces (sat) in a solver communication sequence
for (lowerbound) or (upperbound). It is sent from the server when a
satisfying assignment increases the lower or upper bound in response to
(nextlower) or (nextupper). Unlike (sat), It is followed by the respective
bound, coded as another uint32. Also unlike (sat), it does not undo the
assumptions.

3.3 Assumption Multiplexing

One interesting possibility which arises when interacting with a SAT problem
is partitioning and multiplexing single hard problem instances accross several
cores or machines. In this section we present an extension which allows par-
titioning problems with assumptions and asking the server to multiplex the
solving accross different sets of assumptions.

3.3.1 Opcode (mux)

This extension introduces a new opcode called (mux), which is used by the client
and the server to multiplex exchanges on top of the base protocol. In principal,
it can also be used for other extensions, though we do not detail that here.
The (mux) opcode is a sort of meta code in that it is (almost) always followed

by an identifier ¢ and another opcode o. The identifier is used to identify which
of several multiplexed operations are involved in subsequent exchanges between
the client and the server. The client uses (mux) only for assumptions and
solving. For example, to request multiplexed solving under x and —z, the client
might send

(mux) 1 (assume) z 0

(mux) 2 (assume) -z 0

(mux) 1 (solve)

(mux) 2 (solve)
After a send of (mux) n (solve), the client interacts with the server for the
solve sequence as usual (i.e. without (mux)), with the following exceptions.

1. The server prefixes all immediate post-solve replies with (mux) n for the
appropriate n, this includes (sat), (unsat), (unknown) and (end)?.

2In fact, it is not strictly necessary for the server to provide this information because the

10



2. The client must respond to (mux) n (sat) with (model), (modelfor), or
(end). If the client responds with (end), the server must not reply.

)

{end)

3. The client must respond to (mux) n (unsat) with (failed) (failedfor) or
(end). If the client responds with (end), the server must not reply.

4. The client may, in addition to sending (continue) or (end) as usual in
response to a server supplied (mux) n (unknown), either

(a) send a new (mux) m (solve) for some m which is not currently in a
solve interaction but for which there are assumptions defined. This
tells the server to continue solve sequence n and also multiplex a new
solve sequence m # n.

(b) or, the client may send (mux) m (assume) for some m not in a solve
sequence. This tells the server to continue solve sequence n and also
to record a new set of assumptions.

In this way, the client may queue parallel solving piecewise to the server, by
making a request for 2 solve steps in response to a (unknown).

3.3.2 Example Trace

To continue the example above, the following is a possible trace between the
client and the server exercising the various options above.

N who  message queue (mux-id, step)
1 client (mux) 1 (assume)x 0 0

2 client (mux) 2 (assume) ~x 0 0

3 client (mux) 1 (solve) [(1,1)]

4 server (mux) 1 (unknown) 0

5 client (continue) [(1,2)]

6  server (mux) 1 (unknown) 0

7 client (mux) 2 (solve) [(2,1),(1,3)]

8  server (mux) 2 (unknown) [(1,3)]

9 client (mux) 3 (assume) y 0 [(1,3),(2,2)]

10 server (mux) 1 (unknown) [(2,2)]

11 client (mux) 3 (solve) [(2,2),(3,1),(1,4)]
12 server (mux) 2 (sat) [(3,1),(1,4)]

13 client  (model) [(3,1),(1,4)]

14  server ...—zx ... [(3,1),(1,4)]

15 server (mux) 3 (unsat) [(1,4)]

16  client  (end) [(1,4)]

17 server (mux) 1 (unknown) 0

18 client ({end) 0

19 server (mux) 1 {end) 0

response sequence is a deterministic function of the client request sequence, but providing this
information simplifies client implementations and provides the possibility of an additional
sanity check

11



3.3.3 Work Queue — Order and Size

With muxing, the server maintains a fine grained work queue which is ultimately
completely controlled by the client. There is exactly one interaction in the
protocol which allows the client to request more than one response from the
server, which is when the client responds to (mux) m (unknown) with (mux) n
(solve). Every time this happens, the server appends the next round of work for
m to the queue followed by the first round of work for n. The queue is a FIFO
and whenever the server has an outstanding work queue and is not expecting a
response from the client, the server pops the head of the queue and sends the
result.

To keep track of when to expect responses from the server, the client simply
needs to keep a counter of the size of the work queue, which increments by 1 on
the initial send of (mux) n (solve), increments by 2 every time the client sends
this in response to (mux) n (unknown), and decrements by 1 every time the
client receives a muxed response from the server. For example, after line 14 in
the trace above, the client knows that there are 2 elements in the work queue, so
it waits to read from the server before sending any new requests. Similarly, the
server knows that whenever the work queue is non-empty and it sent a response
for a model or failed literals, the client will not make a request.

3.3.4 Mux Queue bounds

By convention, the client may send (mux) 0 to the server to query the maximal
size of the work queue. The server responds with a single uint32. This number
may be useful for partitioning algorithms.

3.3.5 Mux Summary

In summary, in terms of the overall flow of the base protocol outline in Section
2.2, muxing preserves a similar flow and corresponding constraints for each mul-
tiplexed solution (and extraction) interaction. However, the client must respond
to (sat) and (unsat) even it is does not expect a model. This is necessary so
that after each step of the protocol who reads and who writes to the connection
is well defined and there is only one reader.

3.4 Clause Sharing

A common approach to parallel sat solving is running independent solvers with
different configurations or orderings of data structures and then to have them
share learned clauses. It would be beneficial to have an extension which enabled
this to work in a distributed fashion as well. In fact, this has already been
implemented and evaluated with mpi (message passing interface). However, mpi
is meant for scientific cluster computing and each implementation uses different
message encodings. A simple agreed upon protocol for clause sharing would
enable different solvers to interact in a wider variety of computing environments.

12



Hence, we propose a crisp extension called clause sharing. The extension
uses the (add) encoding of clauses to publish and retrieve clauses. We define 4
new protocol points for this extension.

1. (share) This protocol point is injected by the client immediately after she is
done sending (add). It is a directive to the server to share clauses with the
client for the problem defined by the previous (add). The server responds
with (ok) if it is willing to run a solver or communicate with another solver
to share clauses. Otherwise, the server responds with (end).

2. (putc) This protocol point is injected by the client during a solve loop,
whenever the client may otherwise send (continue). It is followed by a set
of clauses encoded as in (add) (ie ended with (end)). The server simply
interprets this as an implicit (continue) and may answer as in the core
CRISP protocol

3. {getc) This protocol point is also injected by the client whenever she may
otherwise send (continue). The server responds with a set of clauses en-
coded as in add, ending with (end). The server may also respond with
(sat), (unsat), or {end) instead of with a set of clauses.

In this case, the client may in fact be a solver. The server may also be

4 Experiments

We measured the sizes of varint encoding based compression compared to dimacs
format and gzip’d dimacs format.

5 Conclusion

We have presented an efficient wire protocol for incremental sat solving which
can be used to relegate SAT solving in applications to an external server, possi-
bly with dedicated hardware. The protocol is simple, compact, minimizes round
trips, provides compression, and is easily extensible to various domains. From
the client point of view, it can be used as a drop in replacement for incremental
sat applications.

From a solver developer point of view, the server side is completely isolated
from the calling application. As a result, a solver developer can use arbitrary
hardware, programming language or style, and make arbitrary use of operating
system resources independent of the application.

Moreover, the protocol provides a simple, useful piece of infrastructure for
distributed solving, as any solvers which are integrated into a server (or can
serve the protocol themselves) can be used to solve sub problems of a hard
problem with assumptions. Moreover, the client-server paradigm makes this
composable: the server can again be a client to make use of other servers.

We would like to thank Daniel Leberre and Armin Biere for helpful discussion
during the development of CRISP.

13



References

1]

2]

Niklas Eén and Niklas Sorensson. Temporal induction by incremental SAT
solving. FElectr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.

Niklas Eén and Niklas Sorensson. Translating pseudo-boolean constraints
into SAT. JSAT, 2(1-4):1-26, 2006.

Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. J. Autom. Reasoning, 40(1):1-33, 2008.

14



