R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 4.5.1 (2025-06-13)

Copyright (©) 1999-2025 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
https://www.gnu.org/copyleft/gpl.html.

I

1

1 The base package 3
base-package 3
Jbincode e e e 3
Device ..o e e e e e e 4
Machine e e e 5
LPlatform L e 7
abbreviate L. e 9
T4 () o P 11
all . . e e 13
allequal L e e e 14
alllnames L. e e e e 18
AY . . ot e e e e e e e e e 19
APETIINL . . ¢ v v v vt e e e e e e e e e e e e e e e e e e 20
append e e 21
apPLy . . e e e 22
ATES o v e e e e e e e e e e e e e e e e e 24
Arithmetic e e e 25
AITAY © o v v v v e e e e e e e e e e e e e e e e e e e 28
array2DF . . . e 29
as.dataframe L 32
as.Date e 34
AS.ENVIFONMENT v v v ot e e e e e e e e e e e e e e e e e e 37
asfunction L e e e 38
as.POSIX* e 39
Asls . . e e e e e 42
asplit. . . . 43
ASSIZN . . . L . e e e e e e e e 44
assignOPS e e e e 45
attach e e 47
5 49
attributes L e e e e 50
autoload L e 51
backsolve e 52
balancePOSIXIt e 53
basename L. e e e 55
Bessel 56
bindenv L e e e 59
DItWISE o o e e e e 60
body e e 62
bquote L L 63
browser e e e 64
browserTeXt e e e e 66
builtins e e e e 67
DY . e e e 67
C e e e e e 69
call . . . e e e 70
callCC e 72
CallExternal e 73
capabilities 74
CAL . L e e e e e e 76

ii

charexpand L 81
character e e 82
charmatch 83
chartr e e 84
chkDots e e e 86
chol e 87
chol2inv e 89
chooseOpsMethod L 90
class . ..o e 91
COl . o e e e 93
Colon e e e 94
COISUMS e e e 95
commandATgs e e e e e e e e e 97
COMMENE v v v o e 98
CompariSono e e e 98
COMPIEX . . . o o e e e e e e 101
conditions e 103
conflicts 107
CONNECLIONS . . . vt v vt e 108
Constants e e e e e e e e 119
contributors L. e e e 120
Control e e e 120
copyright L e 122
Crossprod e e e e e e 122
Cstack_info 123
CUMSUI . & ot v v et e 124
curlGetHeaders 125
CUL . . o e e e 126
cutPOSIXt e 129
data.class e e e 130
dataframe e 131
datamatriX e e e e e e e e e 133
date e e e 134
Dates e e 135
DateTimeClasses o v i i e e e e 137
def . o e 141
debug L 143
declare e e 145
Defunct e 146
delayedAssSign e e e e e e 146
deparseo L e e e 148
deparseOpts e e e e 149
Deprecated e 152
det . . e 152
detach e 153
diag . . . e e e 155
diff . . e 157
difftime 158
dim ..o e e 160
dimnames e 161
do.call e 163

il

dOts . . . e e 165
double L e 166
dput . . .o e 168
drop . . . e e e e 170
droplevels e 171
dump e e 172
duplicated e e 173
dynload 176
eapply e 178
CIZEN v v e e e e e e e 179
encodeString 181
Encoding 182
ENVITONMENE v v et v et e e e e e e e e e e e e e e e 184
EnvVar 187
eval . oL e e e 189
BXISES . . e e e e e e 191
expand.grid 193
EXPIESSION .« . v v v v v o e e e e e e e e e e e e e e e e e e e 194
Extract e e e 196
Extract.data.frame 200
Extractfactor e 204
Extremes e e 205
extSoftVersion e e 207
factor e 208
file.access e e e e e e e e 212
file.choose e e e e 213
fileinfo e 214
filepath e 216
file.show e e e 217
files . . . e e 218
files2 o e e e e 221
find.package e 222
findInterval e 224
force e e e 226
forceAndCall e 227
Foreign e 227
formals e e 230
format L e 231
format.info L. e e 234
format.pval e 235
formatC e 236
formatDL e e e e 241
function e e e 242
funprog L 243
BC o e 245
GCHME e e e e e e 247
GCLOTLUTE o . ot i it e et e e e e e e e e e e e e e e 248
O . o e 249
getDLLRegisteredRoutines L 251
getLoadedDLLs 252
getNativeSymbollnfo L 253

GEUEXL . . . o L e e e e e e e e e 255

v

getwd .. L 258
gl e e 259
GIED « o v e e e e e e e e e e e e e e e e e 260
grepRaw L 267
groupGeneriC e e 268
SIOUPINE .+« o v v v v v e e e e e e e e e e e 271
97770 & P 272
hexmode e e 273
Hyperbolic e 275
ICONV . . o o e e e e e e e e e e e 276
icuSetCollate e e e 279
identical 281
identity e e e e e e e 284
ifelse e 285
INMEZET . . . o o o o e e e e e e 286
INETaCtiON v v e i e 288
INEractiVve e e e e e e 289
Internal e 290
InternalMethods 290
invisible 291
IS.finite e e 292
isfunction L L e e e e 294
isdanguage 294
1S.0DJECE . . o o e e e e 295
ISTECUISIVE o o o i e i e e e e e e e e e e 296
is.singleo 297
isaunsorted L. e e e e e e e e 297
ISOdatetime e 298
1SS4 L e 299
iISSymmetric e 300
JIEET . L L e 301
kappa e e e 302
kronecker e e 305
110n_Info o e 307
Iabels e 308
lapply e 308
Lastvalue e e e 311
La_library e e 312
La version 313
length o 313
lengths L 315
levels e 316
libcurlVersion e 317
libPaths e 318
library e 320
library.dynam e e e 324
License e e e 326
LISt . o e e e e 326
listfiles e e e 328
Lst2DE . . . e 330
LSt2eNV e e e e e e e 331

load e e e e 332

locales e e 334
log . . o e 337
Logic e 338
logical L 341
LongVectors o e 342
lowertri e 343
IS . e e 343
mMake.names i e e e e e e e e e e e e 345
make.unique e e 346
mapply e e e e 347
mMarginSUMS o oot e e 348
MALOLVEC . . . v v v v e e e e e e e e e e e e e e e e e 349
match e e 350
match.arg 352
match.call 353
match.fun L 354
MathFun e 355
matmult e 356
10 L 0« 358
maxCol 360
MEAN . . o v v v e v e e e e e e e e e e e e e e e e e e 361
memCOMPIESS oot e e e e e e 362
memlimits e e 364
MEMmOTY e e e e e e 365
Memory-limits L 366
memory.profile 367
METEE .« v v v v v v e 368
MESSAZE .+« v v v v v e 370
MISSING . . . o o e e e e e e e e e e 372
mode e e e 373
mtfrm . . . e 374
NA e e 375
NAME . . . v v v v e 377
NAMES . . . o o v v e e e e e e e e e e e e e e e e e 378
NATES o v o v v e 380
nchar e e e 381
nlevels e e e 383
NOQUOLE .+ o v v o v e 384
103 0 0 O 385
normalizePath 387
NotYet e e e e 388
NIOW . & o v vt e e e e e e e e e e e e e e e e e e 389
ns-dblcolon 390
ns-hooks L e e 391
ns-load L e 392
NS-TOPENV + . v v v vt e 395
NULL . . . e 395
NUMETIC o v e o e e e e e e e e e e e e e e e e e 397
NumericConstants i i e e e e e e 398
NUMETIC_VEISION v o v e e e e e e e e e e s e e 400
octmode e e e 402

OMLEXIL . . . vt v o e e e e e e e e 403

vi

Ops.Date e 404
OPLIONS .+ v v v v o e 405
Order e e e e e e 416
OULET . o v v v ot e e e e e e e e e e e e e e e 419
Paren L 420
PATSE . . o ot e e e e e e e e e e 421
PaSte . . . e e e e e e e 424
patheexpand 426
pere_config e 427
PIPEOD . .« o o e e e 428
plot . e 429
pmatch. 431
POlyroot Lo e e e 432
POSLOBNV . . o . o i e e e e e e e e 433
PIELLY . o o e 434
Primitive 436
PIINt . . . o e 437
print.dataframe 439
print.default 440
PIMAriX o vt e e e e e e e e e e 442
ProC.time e e e e e e e e e 443
Prod . .o e e 444
PIOPOItIONS o vttt e e e e e e 445
pushBack e 446
6) PP 447
QR.AuxIliaries e 450
QUIE . o e e e e e e e e e 451
QUOLES e e e 453
R.Version e 456
Random e 458
Random.user 463
TANZE + v o v e 464
TANK . . . L e e e e 466
rapply . .o 467
TAW o e e e e e e e e e e e e e e e 469
rawConnection e e e e e e e 470
rawConversion L e e 471
RAUtls o e 474
readBin e e e 475
readChar 477
readline L e 479
readlines e e e e e 480
readRDS L L 482
readRenviron L e e 484
Recall e 485
reg.finalizer L 485
TEEEX .« v vt e e e e e e e e e e e e 486
regmatches e 491
TEMOVE « v v v v e e e e e e e e e e e e e e e e 493
] 0 494
replace L L 497

Reserved e 497

vii

TEV o v e e e e e e e e 498
Rhome e 498
le . . e e e 499
Round e 500
round.POSIXt e e 502
TOW o v o e e e e e e e e e e e e e e 503
TOWACOINAMES o v e e e e e e e e e e e e e 504
TOWNAMES & . & v v v v v v e 506
TOWSUITL & o v v v v v e 507
S3method 509
sampleo 509
SAVE . v i e e e e e e e e e e e e e e e e 511
scale . .. L e 514
SCAM & v v v e e e e e e e e e e e e e e 516
Search L e 520
seek ..o 520
SEU « v e e e e e e e e e e e e e 522
seg.Date e 524
seq.POSIXt e 525
SEQUEIICE .+« v v v v v e 527
serialize e 528
SEES e e e e e e e e 529
setTimeLimit e 531
showConnections e e e 531
shQuote e e 533
SIZN . . o e e 535
SignalS. e e e 536
SINK . . . e 536
slicedndex 538
SIotOp e 539
socketSelect L 540
SOIVE . . o o e e 541
70) o 542
SOrt_by . . 545
SOUICE & v v v v v e e e e e e e e e e e e 546
Special L e 550
SPIIE . . 553
sprintf . . . L e e 555
SQUOLE L e e 559
srefile . . L 561
StackOverflows e 563
standardGeneric 564
startsWith e 565
Startup e e 566
170 569
Stopifnot L e 571
SIIPHME . . . o v o o o e e e e e e e e 573
] 0 () o 580
SISPIit « . . e e 581
SIITOL . . o v v e o e e e e e e e e e 583
SIIIIM o o e e e e 584

SITUCIULE v v v e e e e e e e e e e e e e e 585

viii

SIIWIAD . . v o e e e e e e e e e 586
SUDbSEt e 587
SUDSHItULE 589
SUDSET . . . L 590
SUM . . .ttt e e e e e e e e e e e e 592
SUMIMATY .+« v v v v v e 593
SVA . e 595
SWEED © v v et e e e e e e e e e e 597
SWItCh e 598
SYNEAX . . v o o e e e e e e e e e e e e e e 600
Sys.getenvo e 601
Sys.getpido 603
Sys.glob e e 603
Sys.anfo 605
Sysdocaleconv 606
SYS.PATENL .« v v v vt e 607
Sys.readlink 610
SYSSELENV . . v vt v v e e e e e e e e e e e e e e e e e e 611
Sys.setFileTime e 612
Sys.sleep . . . o 613
SYS.SOUICE + v v v v v v e 614
Systime e 615
Sys.which 616
4] 1 1 0 617
system.fileo 620
SYSIEMLLME oL e e e e e 621
SYSEMZ . . . L L e e e e e e e e e e e 622
b e 624
tableo 625
tabulate L e 628
Tailcall 629
@ApPLY . . e e e 630
taskCallback L 632
taskCallbackManager 634
taskCallbackNames L 636
tempfile L 637
teXtCONNECtion e e e e 638
tilde e 641
tIMEZONES o v v v o i e e e e e e e e e e 641
tOSIIING e 646
TFACE . . . o o o o e e e e e e e e e 647
traceback L. 651
18 R217c) 1) 1 653
transform L e e 654
Trig . . . e 656
MWS . . oo e e e e 657
Y o e e e 658
typeof . . . e 660
UNIQUE &« v v v v e 661
UNIES . . o oo e e e e e e e e e 663
unlink . . .o 663

iX

UNNAIME v e e e e e e e e e e e e e e e e 666
USC & o v e e e e e e e e e e e e e e e 666
UseMethod e e e 667
userhOOKS e e e 670
utf8CONVErsion e e e 672
UTF8filepaths e 673
validUTFS e e e e e 674
VECIOT . . . o o e o e e e e e e e e e e e e e e e e e e e 675
Vectorize e e e e 678
WAIMING . . v v v v e 679
WAIMINGS . . v v v v v v o e 681
weekdays e e e e 682
which e 684
which.min 686
WIth . . e e e e e 687
withVisible e e 689
WIIEE . . . o o e e e e e e e e e e e e e 690
writeLines e 691
XM . . e 692
zapsmall L e e 693
zpackages e e e 694
ZUtils . . . L e e 695
2 The compiler package 697
compile 697
3 The datasets package 701
datasets-package 701
ability.Ccov e e e e e 701
airmiles e e 702
AIrPassengers e e e e e e e e e 703
airquality e e e e 704
anscombe L. L e e e e e 705
AENU e e e e e e e e e e e 706
attitude L e e 707
AUSITES & . v v v e o e e e e e e e e e e e e e e e e e e 708
DEAVEIS e e e e e e e e 708
Blsales 709
BOD . . . e e 710
CATS . v v v e i e e e e e e e e e e e e e e 711
ChickWeight e 712
Chickwits e e 713
CO2 . e e e 714
COZ . o e e e e e e e 715
crimtab . . . oL . L e e e e 716
diSCOVETIES o o o e e e e e e e e e e e e 718
DNase e 718
ESOPh . . L e 719
CUID . . v v e o e e e e e e e e e e e e e e e e e e 721
eurodiSt L e e e e e e 722
EuStockMarkets e 722
faithful e 723

Formaldehyde 724

AL . . L e e e 726
HairEyeColor e 727
Harman23.cor 728
Harman74.cor 729
Indometh e 729
infert. L 730
InsectSprays L 731
15 732
islands L e 733
JohnsonJohnson Lo 734
LakeHuron e 734
Th e 735
LifeCycleSavings 735
Loblolly 736
longley e 737
Lynx . .. e 738
MOTIEY e e e e e e 738
MECATS . .« . v v v v v e 739
nhtemp L 741
Nile . . . e 742
0 T0] 173 o 743
NPK . . e 744
occupationalStatus L. L e 745
Orange e e e 746
OrchardSprays 747
PENGUINS o o e e e e e e e e e e 748
PlantGrowth 750
PIrECID . o o o e e e e e e e 751
presidents 752
PIESSUIE . . .« . ot it e e e e e e e e e e e e e e e e 753
Puromycin. L e 753
quakeso 755
randu ... oL e 755
TIVETS © v o v it e e e e e e e e e e e e 756
TOCK . . o 757
Sleep 757
stackloss 758
State L e 759
sunspot.month e e e e 761
SUNSPOL.YEAr . .« . . v v v v ettt e e e e e e e e e e e 763
SUNSPOLS . . v v v o i e e e e e e e e e e e e e e e e 764
SWISS . . v v v e e e e e e 764
Theoph e 766
Titanic 767
ToothGrowth 768
trEering e 769
TEES . v v v o e e e e e e e e e e 770
UCBAAMISSIONS o oo o e e 770
UKDriverDeaths e e 772
UKgas o e 773

UKLungDeaths e 773

Xi

USAccDeaths 774
USAITESES oo o e e 774
USJudgeRatings e 775
USPersonalExpenditure 776
USPOP + ¢ v v e 777
VADeaths e 777
volcano 778
warpbreaks e e e e e e 779
WOIMEIL .« o o v vt e e e et e e e e e e e e e e e e 780
WorldPhones 780
WWWusage e 781
4 The grDevices package 783
grDevices-package 783
adjustcolor. 783
as.graphiCSANNOL 785
Y 1] 1) 785
axisTicks L 787
boxplot.stats 789
bringToTop e 790
CAITO . . . o o o it 791
cairoSymbolFont 793
check.options e e 794
chull o e 795
&) 796
col2rgb . . . L 797
colorRamp e 799
ColOors . . . o 801
contourLines L 802
convertColor 803
densCols e e 805
dev . . . e 806
dev.capabilities 808
devcapture L. e e e e e e e 809
devflush L . e 810
devinteractive L 810
dev.ssize e e e 811
dev2 . .o e e e 812
dev2bitmap 814
devAskNewPage 816
Devices e 817
embedFonts 818
extendrange L 819
getGraphicsEvent 820
glyphInfo e 823
SIAY o v e e e e e e e e e e e e e e e e e e 825
gray.colors e e e e e e 826
grSoftVersion L 827
hel o o e 828
Hershey e 830
NSV . L e 833
Japanese L e e 834

make.rgb e e 835

Xii

msgWindow 837
n2mfrowo e 837
nelass ..o e 838
palette 840
Palettes e 842
PAf . e 846
pdfioptions 852
PICEX . . o o e e e e e e 853
plotmath L e 855
PHE . o e 860
POSESCIIPL . . . o o o e 864
postscriptFonts 869
pretty.Date L e e e e e 872
PSOPLIONS . . o . o o e e e e e e e e e e e e 873
QUATTZ . o o o e e e e e e e e e e e e e e e 874
quartzFonts 876
recordGraphics 877
recordPlot 879
8D . e e e 880
rgb2hsv . .o e e 881
savePlot L 883
trans3d e e 884
TypelFont 885
WINdOWS e e 887
WIndOWS.OPHONS o e e e e e e e e e e 891
windowsFonts 892
XLL e 893
X1TFonts e e e e e e 898
XY.COOTdSo e e e 899
xyTable e 901
XYZ.COOTAS . . o v o v o e e e e e e e 902
5 The graphics package 905
graphics-package 905
abline e 906
AITOWS .« o ot v e e e e e e e e e e e e e e e e e e 907
assocplot 909
AXIS . o e e e e e 910
AXIS .+ v v e e e e e e 911
axis.POSIXct e 914
axTicks e 916
barplot 918
bOX . e e e e e 922
boxplot 923
boxplot.matrixX e 926
DXD . o e 927
cdplot e e 930
Clip . . . e 932
CONLOUT . . . o v vt vt e e e e e e e e e e e e e 933
convertXY e e 936
coplot . . . 937
CUIVE . o et e et e e e e e e e e e e e e 939

filled.contour 943
fourfoldplot e e 945
frame e 947
grid ..o e 948
hist. . . . e 949
histPOSIXt e 953
identify 954
IMAZE . . . o v e e e e e e e e e 957
layout e e 959
legend 961
lines e 967
locator 968
matplot e e e e e e e e e 969
mosaiCPlOt e e e e e e e 972
MEEXE . . . o e e e e e e e 975
PAITS e 977
panel.smooth 979
PAL . o o e 980
PEISD -« o o e e e e e e e e e e e e e e 990
DIC . o o e e e 993
plotdataframe 995
plotdefault 996
plotdesign. 998
plotfactor 1000
plot.formula e 1001
plothistogram L e 1003
plotraster 1004
plottable 1005
plotwindow 1006
PIOLXY . o o o e e 1007
POINES . . . o o e e e e e 1008
polygono L e 1012
polypath e 1014
rasterlmage L 1016
TECE o v o i e e e e e e 1017
TUZ o v e e e e e e e e e e e e e e e e e 1018
SCIECIL . . v v v e i i e e e e e e e e e e e e e 1019
SEEMENLS e e 1021
smoothScatter e 1022
spineplot Lo e 1024
SEATS . . ot e e e e e e e e e 1027
SIBIM . . o v e e e e e e e e 1030
stripchart L L e 1031
strwidth . . . L L e 1033
sunflowerplot 1034
Symbols 1037
TEXE . o e e e e 1039
title . ..o e 1042
UNIES . . o o et e e e e e e e e e e 1043
Xspline e e e 1044
6 The grid package 1047

grid-package 1047

X1V

absolute.Size 1048
AITOW . o v v v v e e i e e e e e e e e e e 1049
as.amask ... oL e 1049
caleStringMetric 1050
dataViewport e e e e e 1052
depth o e 1053
deviceLoc e 1054
drawDetails 1055
editDetails 1056
editVIEWDOTt o e e e e e e e e 1057
explode L e 1058
gEdit. 1058
getNAMES e e e e e e 1059
0 1 P 1060
gPath e 1062
Grid 1063
Grid VIEeWports 1063
gridaadd L e e 1067
gridbezier 1068
grid.cap e 1069
gridcircle L. e e e 1070
gridclip . . . L 1071
grid.convert e e 1073
grid.COPY .« . o o e e e e 1075
grid.curve e 1075
griddelay 1077
griddisplay.list 1079
grid.DLapply 1080
gridddraw . . . L L e e e 1081
gridedit 1082
gridforce 1083
gridframe L e e e 1085
gridfunction.o 1086
grid.get . . . oL e 1088
grid.glyph L e 1089
gridgrab L L 1090
Grid.grep e 1091
gridgrillo 1093
grid.grob Lo 1093
grid.groupo 1095
griddayout 1097
gridines L 1099
grid.Jocator L e e e e 1101
gridds 1102
grid.MOVe.tO 1104
SridNeWPAZE e e e e e e e e 1105
gridnull 1106
gridipack . . . L L 1107
gridopath L e 1109
gridpplace 1111
gridplotand.legend 1112

grid.points e e 1113

XV

grid.polygon 1114
grid.prettyo e e e e e e e 1115
Gridraster e e e e e e e 1116
gridarecord L. L e 1117
gridreCt L e 1118
gridrrefresho 1120
Grid.remMOVE e e 1120
gridoreorder L e e e e e e e 1121
grid.SEEMENLS e e e e e e e e e e 1123
grid.set . . oL L e e 1124
grid.showlayout 1125
grid.show.viewport 1126
grid.stroke L. L e e e e 1127
gridteXt L e e e e e e e 1129
grid.XaxiS e e 1131
grid.xspline L. e e 1132
grid.yaxiS e 1134
gridCoords 1136
grobCoords e e e e e e e 1137
grobName L e e e e e 1138
grobWidth 1138
grobX ..o e 1139
legendGrob 1140
makeContent e 1141
PALterns e e e e e e e e e e e 1142
plotViewport e e e 1144
Querying the Viewport Tree L oo 1145
resolveRasterSize 1146
roundreCt L e 1147
showGrob L 1148
ShOWVIEWDOTt o e e e e 1149
stringWidth oL 1151
UNIE .o ot e e e e e e e e e e e e e e e e e 1151
UNIEC . o o o o o e e e e e e e e 1154
unitlength o 1154
UNILPMIN . . v v v e o e 1155
UNIETED + v v v v o v e 1156
unitType L L 1156
validjust L e e 1157
validDetails L 1158
viewportTransformo 1159
vpPath e 1161
widthDetails 1162
Working with Viewports o 1162
xDetails L 1165
xsplinePoints L 1166
7 The methods package 1169
methods-package L 1169
BasicFunsList 1170
AS o e e e e e e e e 1170
BasicClasses e e 1172

callGeneric e e e e 1173

XVi

callNextMethod e 1175
CANCOBICE v v v e e e e e e e e e e e e e e e e e e 1179
chind2 L e 1179
Classes o e e e e e e 1181
classesTOAM e e 1181
Classes_Details 1183
className e 1186
classRepresentation-class oL o 1188
Documentation e 1189
dotsMethods e 1191
environment-class L L e e 1193
envRefClass-class 1194
evalSource L. e e e 1195
findClass e 1198
findMethods e 1200
fixPrel.8 e 1202
genericFunction-class 1203
GenericFunctions 1204
getClass L 1207
getMethod e 1209
getPackageName L e 1212
hasArg L e 1213
ImplicitGeneric e e e 1214
inheritedSlotNames 1216
initialize-methods 1217
Introduction e 1218
IS o o e e e e e e 1220
isSealedMethod 1222
language-class e e e 1223
LinearMethodsList-class e 1224
LocalReferenceClasses e 1225
makeClassRepresentation e 1226
method.skeleton 1227
MethodDefinition-class 1228
Methods e 1229
Methods_Details e 1229
Methods_for_Nongenerics oo 1234
Methods_for_S3 e 1238
MethodWithNext-class e 1240
NEW . o o o e e e e e e e e e e e e e e e e e 1241
nonStructure-class e 1243
ObjectsWithPackage-class 1243
promptClass e e e e e e e 1244
promptMethods 1246
ReferenceClasses e 1247
removeMethod 1257
TEPresentation e e e e e e e e 1258
S3Part e 1259
S4groupGenerico e e e e e e e e e 1263
SClassExtension-class 1265
selectSuperClasses e 1266

SELAS . . L e e e 1267

SetClass e
setClassUnion e
SEtGENETIC o e
setGroupGeneric e
setls . . . e e e
setLoadActions e
setMethod
setOIdClass e

Slot . .
StructureClasses e e e
testinheritedMethods
TraceClasses v i v i e e e e
validObject e

8 The parallel package

parallel-package L
clusterApply L
detectCores
makeCluster L
meaffinity e e e e
mechildreno
mefork L
melapply
meparallel e
PVEC . o o
RNGstreams
splitindices

9 The splines package

splines-package
asVECIOr L e e e e
backSpline
DS e e

DS o v v e e e e e e e e e e e e
periodicSpline L. e
polySpline
predict.bs
predict.bSpline
splineDesign e
splineKnots
splineOrder e e
XYVECIOT o o e e e

10 The stats package

stats-package
checkMFClasses e

XViii

addmargins 1356
AZETEZALE . . v . . i e 1357
AIC . e 1360
alias e e e 1362
ANOVA .« v v v e 1364
anova.glm 1365
anova.lm e 1366
anova.mlm e e e e 1368
ansari.test e e e e 1370
A0V . o o e e e e e e e e e e e e e e e e 1372
approxfun 1374
AT . L e e e e e e e e e 1376
arolS . . . L e e e e e 1380
ArMA . . . o v e e e e e e e e e e e e e e e e 1382
arima.SimM ot s e e e e e e e e e e e e e e e 1386
arimal e e e e e e e 1387
ARMAacf e 1391
ARMAOMA e e e 1392
as.helust L L e e e 1393
asOneSidedFormula 1394
AVE . o o e e e e e e e e e e e e e e e 1394
bandwidth 1395
bartlett.test L e e e e e e 1397
Beta e e 1399
binom.test e e e e e e 1402
Binomial 1403
biplot e 1405
biplot.princomp 1406
birthday e e 1407
Box.test e e e 1408
C o e e e 1410
CANCOT . . . v v e v e e e e e e e e e e e e e e e e 1411
case+variable.names L 1412
Cauchy e 1413
chisq.test e e e e e e 1414
Chisquare e 1417
cmdscale L e 1420
coef . L e e e e 1422
COMPIELE.CASES . . . v v v v e ot e e e e e e e e e e e e e e e 1423
confinto e e e 1424
constrOptim e e e e e e e 1425
CONIAST v o et e e e e e e e e 1427
CONMTASES . . . v v v e o e e e e e e e e e e e e e e e e 1428
CONVOLVE e e e 1430
cophenetic L 1431
COT & v o e e e e e e e e e e e e e e e e 1433
COLEESE . . . o o i e e e e e e 1436
COV.WL . o o e e e e e e e e e e e 1438
CPEIAM ot v v v v v e 1439
CULTEE . . v v v v v e e e e e e e e e e e e e e e 1440
decompose 1441

delete.reSponse L e e e e e e e e e 1443

XiX

dendrapply 1444
dendrogram L e e e e e e e 1446
density L e 1450
deriv 1455
deviance L e e 1457
dfiresidual L e e e e e e 1458
diffinv . . .o 1459
dist. . . . e e e 1460
Distributions 1463
dummy.coef e 1464
ecdf . .. e 1465
effaovlist 1467
effects L 1469
embed L. L e e 1470
expand.model.frame 1471
Exponential L 1472
extractAIC 1473
factanal e 1475
factor.scope 1478
family 1479
FDist . . . e 1483
L 1485
filter 1487
fishertest e e 1488
fitted e 1491
fivenum 1492
fligner.test L e e e e 1493
formula e e e e 1494
formulanls e 1497
friedman.test L. 1498
ftable e e e e e e 1500
ftable.formula 1501
GammaDist e 1503
GEOMELIIC v v v e e e e e 1505
getlnitial L e 1507
glm . . e 1508
glm.control 1513
glm.summaries e e e e e e e e e 1514
helust . . . o L e e e 1515
heatmap e e e e 1519
HoltWinters e e 1522
Hypergeometric 1525
identify.hclust L. e 1527
influence.measures e e e 1528
INEEGIAte o v v e e e e e 1532
interaction.plot L e e e e e 1534
IQR . . . e 1536
isempty.model 1536
ISOTEZ . v v v v e e e e e e e e e e e e e e 1537
KalmanLike e e 1539
kernapply 1541

kernel L e e e e 1542

XX

kmeans e e e 1544
kruskal.test L. L e e e 1546
KS.teSt e e e 1548
ksmooth e 1551
lag . . . e e 1552
lag.plot L 1553
line e 1554
Listof e e e 1556
Im .. e 1556
Imfit . . . e 1560
Im.influence e e 1561
Im.Summaries e e e e e e e e 1563
loadings e e e 1565
loess e e e 1566
loess.control L 1568
Logistic e e e 1569
loglik o L e 1571
loglin e e e e 1572
Lognormal 1574
TIOWESS o e e e 1576
Is.diag e e e 1577
Isprint 1578
Isfit . . e 1579
mad e e e e e e e e e 1580
mahalanobis 1581
make.link e 1582
makepredictcall oL 1583
MANOVA . . v v v v v e 1584
mantelhaen.test L. L 1585
mauchly.test 1587
MCNEMALIESt o o e e e e e e e e e e e e e e e e e 1589
median. e e e e e e e 1590
medpolish 1591
model.extract e 1592
model.frame L. 1594
model.matrix e 1596
model.tables e 1598
monthplot L e e e e e 1599
mood.teSt L e e e e e e 1601
Multinom e e e 1603
NA.ACHON ot o e e e e e e e e e e e e e e e e 1604
NA.CONLZUOUS .« . . . v v v ottt it e e e et e e e e 1605
nafail 1605
NAPIINt L L e e e 1606
naresid L. L e e 1607
NegBinomial 1608
NEXIN e e e e e e e 1610
NIM .. e e 1611
nlminb 1613
IS . . e e 1616
nls.control L. e 1622

NLSStASYyMptotic« o v v vt e e e e e e e 1623

XXI1

NLSstClosestX o o 1624
NLSstLfAsymptote o e e 1624
NLSStRtAsymptote o e e 1625
nobs . . L 1626
Normal e 1627
numericDeriv 1629
offset 1630
oneway.test L e 1631
OPLIM o oo e e e 1632
OPHIMIZE o v v o o e e e e e e e e e e e e e e e 1637
orderdendrogram 1639
padjust . ..o e 1640
Pair 1642
PAIrWISe.prop.test e 1643
PAITWISE.LIESt e e 1644
pairwise.table L. 1645
pairwise.wilcoxX.test 1645
plotact e e 1646
plotdensity 1648
plotHoltWinters 1648
PIOLASOTEE o e e e e e e e 1649
plotIm 1651
PlOt.PPr . . e 1654
plotprofile e 1655
plotprofilenls 1657
PIOtSPEC L 1658
plot.stepfun 1659
PIOtES . . e 1661
Poisson 1662
POISSOMLEES o o o e e e 1664
POly . e 1666
POWET .« o o i e e e e e e e e e 1667
power.anova.test L 1668
POWEL.PIOP.LESt o o ot e e e e e e 1669
POWELLIESt o o e e e e e e e e 1671
PPtest o 1672
PPOINES .« . . o o e e e 1673
PDT - o o e e e 1675
PICOMD . . .t ot it e e e e e e e e e e e 1678
predict e e e e e 1681
predict. Arima L. 1682
predict.glm 1683
predict HoltWinters e e 1685
predict.m 1686
predict.loess 1689
predictnls e e 1690
predict.smooth.spline oL oL 1692
preplot . . . oL 1693
PriNCOMP o o e e e e e e e 1694
print.power.htest L 1696
PINLES « . o o o o e e 1697

printCoefmat 1698

XXii

profileo 1700
profile.glm e 1700
profilenls 1702
PIOJ o o e 1703
PIOPLESt . . o o o o e e e e e e 1705
prop.trend.test L e e 1707
a1 T) 0 0 1P 1708
quade.est e e 1710
quantileo 1712
r2dtable 1715
read.ftable L 1716
rect.hclust 1719
relevelo 1720
reorderdefault 1720
reorder.dendrogram Lol 1722
replications e e e e e 1723
reshape e 1724
residuals oL L 1728
runmed ... L e e e e e e e 1729
rWishart L L L 1732
scatter.smooth 1733
screeploto e 1734
SA 1735
SE.CONMIASE . .« o v v v v v v e e e e e e e e e e e e 1736
selfStart L 1738
setNames e 1740
shapiro.test L e e e e 1741
SIMA e e 1742
SignRank e e 1744
simulate e e e e e 1745
SMINOV o oo o e e 1747
SMooth L e 1748
smooth.spline L e 1750
smoothEnds 1755
sortedXyData e 1756
SPEC.AT « v v v v v e e e e e e e e e e e e e e e e e e e 1757
SPEC.PEIAML . o o o v e e e e e e e e e e e e e e 1758
SPEC.LAPET .« . v i e e e e e e e e e e e e e e e e e e e 1760
SPECIIUI .+« v v v v v e e e e et e e e e e e e e e e e e e e 1761
splinefun e 1763
SSasymp e e e e 1766
SSasympOff 1768
SSasympOrig e e e e 1769
SSDIEXP . . . o 1771
SSD . 1772
SSfol . e 1774
SSEpl . 1775
SSEOMPErtz e e 1776
SSIOZIS . . . o e e e e 1777
SSmicmen 1779
SSweibull L 1780

STATL e e e e e e e 1781

StALANOVA e e 1782
stats-deprecated L. L e e e 1783
] 7] o P 1783
stepfun. L 1786
StL 1788
stlmethods 1790
StructTS . . . e 1791
SUMMATY.A0V .+« v v v e v e 1793
summary.glm e e e e e e e e 1794
summary.Imo 1796
SUMMATY.MANOVA v v v v v e e e e e e e e e e e e 1798
summary.nls e 1800
SUMMATY.PINCOMP .+ .+« v v v v v e e e e e e e e e e e e e e e e e e 1801
SUPSIIIU . v v v v v v e 1802
SYMNUIM . . . o ottt e e et e e e e e e e e e e e e 1803
LEESE . . o e e e e e e e e e 1806
TDist . . . e 1808
termplot 1810
TBIMNS . v v v e 1813
terms.formulao Lo 1814
termS.object 1815
HIME . . o o e 1816
toeplitz L e 1817
IS e e 1819
ts-methods e e e e 1821
tS.PlOt . . e e e e e 1822
ESLUNION o et s e e e e e e e e e e e e e e e e e e e 1822
tsdiago e 1823
ESP o o e 1824
tsSmooth e 1825
Tukey e e e 1826
TukeyHSD e 1827
Uniform e 1829
UNITOOL . & v v v e 1830
updateo L e 1833
update.formula L e 1835
VALIESt o e e e e e e e e 1836
VAMMAX . . v v v v e 1837
VEOV o o v o e 1838
Weibull e e 1839
weighted.mean L 1841
weighted.residuals L 1842
weights e 1843
WIICOX.EESt e e e e 1843
WIICOXON e e e e 1847
WIndow e 1849
XtabS . . . e 1850
11 The stats4 package 1855
statsd-package 1855
coef-methods e 1855
confint-methods L e e 1856

logLik-methods e 1856

XX1V

mle . .. e e e e e 1856
mle-Class e e e 1860
plot-methods 1861
profile-methods 1861
profilemle-class 1862
show-methods 1863
summary-methods L e 1863
summary.mle-class e e 1864
update-methods e e e 1864
veov-methods L 1865
12 The tcltk package 1867
teltk-package 1867
Tcllnterface e e 1867
tclServiceMode L e e 1872
TkCommands e e e 1873
tkpager L 1876
tkProgressBaro 1877
tkStartGUI e 1878
TkWidgetemds 1879
TkWidgets e 1881
tk_choose.dir s 1883
tk_choose.files 1884
tk_messageBoxX 1885
tk_select.listo 1886
13 The tools package 1887
tools-package 1887
printviaformat L L L L e 1887
add_datalist e 1888
assertCondition 1889
basetools e e e e e 1890
bibstyle e e e 1891
buildVignette e e 1893
buildVignettes e e e 1894
charsets L e 1895
checkFF e 1896
checkMDSsums e 1897
checkPoFiles e 1898
checkRd e 1899
checkRdaFiles e 1902
checkTnF e 1903
checkVignettes L e 1904
check_packages_in_dir 1905
codOoC . .. e e e 1908
compactPDF e 1909
CRANILOOIS o e e 1911
delimMatch e 1913
dependsOnPkgs L e 1914
doitools e 1915
encoded_text_to_lateX 1916
fileutils e 1917

find_gs_cmd e 1919

XXV

getVignetteInfo 1920
HTMLheader e e 1921
HTMLINKS e e e e e e e 1922
licensetools e e e e 1922
loadRAMacros e e 1923
MAaKEVAIS e e e e e e e e e e e e 1925
make_translations_pkg 1925
matchConcordance i i e 1926
mASSUM e e e e e e e e e e e 1928
package dependencies 1929
package_native_routine_registration_skeleton 1930
parselatex 1933
parse_Rd . . . oL e e 1934
PKg2HTML e e 1936
pskill . . e 1937
PSIECE o oo e e 1939
QC . e e e 1940
R e 1941
Remd e 1942
RA2ZHTML e e 1943
Rd2txt_options e e 1946
RAiff e 1947
Rdindex e 1948
RdTextFilter e 1949
Rdutils e 1950
read.00Index e e e 1951
sha256sum e e e e 1952
showNonASCIIL e 1953
startDynamicHelp 1954
SweaveTeXFilter 1955
testlnstalledPackage L 1955
texi2dvi ..o L e e e e 1957
toHTML e 1959
tools-deprecated 1959
toRd . . . e 1960
toTitleCase e 1960
undoC L e e 1961
update_PACKAGES e 1962
update_pKg po 1964
urltools e e 1966
userdir e e e e 1967
vignetteEngine L e e e 1968
vignetteInfo oL 1969
write_PACKAGES e 1970
XgetteXt e 1972
14 The utils package 1975
utils-package 1975
adiSt e 1975
alarm . . L L L e e 1977
APIOPOS + ¢ o e e e e e e e e e e e e e e e e e e 1978
ATEZEXEC .+ « v v v v v e e e e e e e e e e e e e e e e e e e 1979

arrangeWindows L L e e e 1981

XXV1i

askYesNO L 1982
aspell . . . L e 1983
aspell-utilso 1985
available.packages 1987
BATCH 1989
bibentry 1990
browseEnv. 1995
browseURL e 1997
browseVignettes e 1998
DUZTEPOTL . . . o o v o o e 1999
CaAPLUIC.OULPUL o . v v o bt et e e e e e e e e e e e e e e e e 2001
changedFiles 2002
charClass e 2005
choose.dir e e e e 2006
choosefiles L 2007
chooseBioCmirror. L 2008
chooseCRANMIITOr o e e e e e e 2009
CItation e e 2010
CItE . . o o o e e e e e e e e e e e 2012
CitEntry 2014
clipboard e 2015
close.socket L e 2017
combn e 2017
compareVersion v it e e e e e e e e e e e e e e e e e 2019
COMPILE e 2020
contriburl L. 2021
countfields 2021
Create.POSL . . . o v v i i e e e e e e e e e e e 2022
data . ..o e 2024
dataentry L 2026
debugcall 2028
debugger e e e 2029
demo e e 2031
DLL.Version o o it e e e e 2033
download.file 2034
download.packages 2038
edit . .. 2039
edit.dataframe 2041
example L e e e 2042
file.edit 2045
file_test e e e e 2046
findCRANMIITOr o o e e e e e e e e e e e e e e 2047
findLineNum 2048
X . e 2049
flush.console L 2050
format L e 2051
getAnywhere L L 2052
getFromNamespace L 2053
getParseData e 2054
getS3method L. 2056
getWindowsHandle Lo 2057

getWindowsHandles 2058

glob2rx . .o 2059
globalVariables e 2060
hashtab e 2062
hasName 2065
head e 2066
help . . . o e 2069
helprequest L e e e e e e 2071
help.search 2072
help.start 2075
hsearch-utils 2076
INSTALL e 2077
install.packages 2080
installed.packages L e 2085
isS3method e 2087
isS3stdGeneric 2088
LINK . e 2089
localeToCharset 2090
ISSStr . o o e 2091
MAINAINET o v et e e e e e e e e e e e e e e e e e e e 2092
make.packages.html oL 2093
make.socket 2094
00T 3L 2095
methods 2096
mirrorAdmin 2098
modifyList. 2099
DEWS & o v v e et e e e e e e e e e e e e e e 2100
nsl . oL 2102
Object.size 2103
package.skeleton 2105
packageDescriptiono 2107
packageName 2109
packageStatus L e e 2110
PACE . . o e e e e 2112
PEISON .« . . o o i i e e e e e e e 2112
personList L e e e e e 2116
PkgUtils e 2117
PIOCESS.EVENLS . . . o v v v v vt v e e e e e e e e e e e e e e 2118
PIOMPL . . . L o o e e e e e e e e e 2118
promptData 2121
promptPackage 2122
QUESLION e e e 2123
FeT0) 1] 0(<) 2125
read DIF o L e 2130
read.fortran L e 2133
read Wl . . L L L 2134
read.socket 2135
read.table L. e e 2136
readRegistry oL 2141
TECOVET « v v v v e e e e e e e e e e e e e e e e e e e 2143
relist e e e e 2144
REMOVE e 2146

XXViii

TEMOVESOUICE . . . v v v v o v vt e e et e e e e e e e e 2148
RHOME e 2149
TOMAN © © o v v v v e e e e e e e e e e e e e e e e 2149
Rprof . . . o e 2151
Rprofmem e 2154
Rscript e 2155
RShowDoc e 2156
RSiteSearch e 2157
TEAZS . o o e 2159
Rtangle e 2160
Rweavelatex e 2163
Rwin configuration L 2167
Savehistory L e e 2168
select.list L. e 2170
sessionlnfo e 2171
SEtRepoSItories 2173
setWindowTitle e 2174
SHLIB 2175
shortPathName 2177
sourceutils L 2178
Stack 2179
SEE o 2180
SIICAPLUTE . . . v v o v e 2184
summaryRprof 2185
SWEAVE . . . o o o e e e e 2187
SweaveSyntConvo e e e e e e 2189
11 2190
toLatex e 2193
txtProgressBar. L 2194
LyPe.CONVETL oL e 2195
UNEAT . . 0 v v o e 2197
UNZIP . o oot e e e e e e e e 2200
update.packages L e e 2201
upgrade L e e e 2204
url.show L e e 2204
URLencode e e e e 2205
utils-deprecated L 2206
VIEW . . o e 2206
VINEt® e e 2207
warnErrList L. 2208
winDialog 2209
WINEXITAS . . . v v v v v e e e e e e e e e e e e e 2210
WINMENUS e 2211
winProgressBar L e 2213
write.table L L L 2214
ZID o o e e e e e e e e e e e e 2217
I 2219
15 The KernSmooth package 2221
bkde 2221

bkfe e e e 2224
dpih . . . e e e 2225
dpik . . . e e 2226
dpill . . . e 2227
locpoly 2229
16 The MASS package 2231
abbey e 2231
accdeaths e 2231
addterm e e 2232
ALdS2 . . e e 2233
Animals L. e e 2234
ANOTEXIA . . . v v v v o e 2235
anova.negbinl 2235
<Y 2236
bacteria L e e e 2237
bandwidth.nrd 2238
DCV . e e 2239
beavl . . . e e 2240
beav2 . . . L e e e e 2241
Belgian-phones 2242
biopsy e 2243
birthwt e e e e 2244
Boston e e 2245
DOXCOX e e e e 2246
cabbages L 2247
caith e 2248
Cars93 . . . L e e 2248
CALS . o o e e e e e e e e e e 2250
CEMENL v v v e i e i e e e e e e e e e e e e e e e e e 2250
chem e e 2251
CONZLT . . . o e o e e e e e e e e 2252
confint-MASS e 2252
contr.sdif L L 2253
COOP & v v e 2254
COTTESP .« v v v e 2254
covarob . . L L e e 2256
COV.ITOD e 2258
CPUS . v v vt e e e e e e e 2259
Crabs e e e e 2260
Cushings e e e 2260
DDT . . . e 2261
deaths e e 2261
denumerate L. e e e 2262
dose.p . . . 2263
drivers e e e e 2263
dropterm e e e e e e 2264
eagles L 2265
epil .. e 2266
eqscplot . . . L 2268
farms 2269
fel . e e 2270

fitdistr 2270

XXX

forbes L 2272
fractions e 2273
GAGUIINE o o e e e e e e e e e e e e e e 2274
galaxies e 2275
gamma.diSpersion 2275
gamma.shape 2276
gehan L e e 2277
GENOLYPE o L e e e 2278
BEYSET . v i e e e e e e e e e e e e e e e e e 2279
gilgais e e 2279
GINV . L 2280
glm.convert 2281
glmnb . . . L e 2282
glmmPQL 2283
hills . . . 2284
hist.scott e 2285
housing 2286
huber e 2287
hubers e e 2288
IMMET . . . v v o e 2289
Insurance e 2290
iISOMDS . . . e 2291
kde2do 2292
Ida e 2293
Idahist 2296
leuk . . . e 2297
Im.gls e 2298
Imridge L 2299
loglm e e e e 2300
logtrans 2302
Igs . o o o e 2303
mammalS e e 2306
MCA . . v v v e e e e e e e e e e e e e e e e e e e 2307
meycle . ..o e 2308
Melanoma L e 2308
menarche L 2309
michelson 2310
minn38 . ..o e 2310
00 T0] 1) - 2311
muscleo e 2312
MVINOTI + . v v v v v e 2313
negative.binomialo 2314
newcomb 2315
nlschools e 2315
NPK . . e 2316
nprl . o e e e e 2317
Null . . e 2318
0AS . v v e e e e e e e e 2319
OME . . e 2320
PAINLEIS 2322
pairs.ddao 2323

parcoord oL e e e e e 2324

petrol . .o L 2325
Pima.tr. e 2326
plotdda e 2327
plotmea e e e e e e 2328
polr . e 2328
predict.glmmPQL 2331
predictdda e 2332
predictlgs 2333
predicttmea e 2334
predict.qda e 2335
profile.glm 2336
qda. . .o e 2336
QUINE . o v ot e e e e e e e e e e e e e e e e e e 2338
Rabbit e 2339
rational L L 2340
TENUMETAIE v v v v e v e 2341
rIm . . e e e e e 2341
TINS.CUTV © o v v v v e 2344
rnegbin L 2345
road e e e e 2346
TOUTET e e e e 2346
Rubber. e 2347
SAMIMON . .+ o ¢ v v v v e e e e e e e e e e e e e e 2348
Ships . . . o e e e 2349
shoes L 2350
shrimp o 2350
shuttle oL e 2351
Sitka e e e 2351
Sitka89 . . . e 2352
SKye . . 2353
SNails . .. e e e e e 2354
SP500 e 2355
StAres L 2355
SEEAM e e e e e e 2356
StepAIC . . . L e e 2356
] 1) 001 2358
STUAIES e e 2359
summary.loglm oL 2360
summary.negbin 2361
summary.rlm e e e e e 2362
SUIVEY . o v v et i e e e e e e e e e e e e e 2363
synthtr . . . e e 2364
thetamd 2364
tOPO . . . e 2366
Traffic e 2366
truehist e 2367
UCV o v et e e e e e e e e e e e e e e e 2368
UScereal e 2369
UScrime e e 2370
VA e 2371
waders e e 2371

XXXI11

width.ST . . o o 2374
WIELEMALTIX o v o o e e e e e e e e e e e e e e e e e e 2375
WHIOSS . . e e 2376
17 The Matrix package 2377
ablndex-class e e 2377
ablseq e e e 2378
allequal-methods 2379
asUniqueT e 2380
band-methods 2381
bandSparse L 2383
bdiag e 2384
boolmatmult-methods L 2386
BunchKaufman-class 2387
BunchKaufman-methods 2390
CABX . o e 2391
cbind2-methods e 2392
CHMfactor-class o e e e 2393
chol-methods e 2397
chol2inv-methods 2400
Cholesky-class e 2402
Cholesky-methods 2404
coerce-methods-graph L 2410
coerce-methods-SparseM 2411
colSums-methods 2412
condest L e e e e e e e 2413
CsparseMatrix-class 2415
ddenseMatrix-class 2417
ddiMatrix-class e e e e e e 2417
denseLU-class e 2418
denseMatrix-class 2420
dgCMatrix-class e 2421
dgeMatrix-class 2422
dgRMatrix-class o e e e e 2423
dgTMatrix-class e e e e e 2424
Diagonal 2425
diagonalMatrix-class 2427
diagU2N . . . o e 2428
dimScale 2430
dMatrix-class e e e e e e e 2431
dmperm L e e e e e e 2432
dpoMatrix-class 2434
dropO . . . e 2435
dsCMatrix-class o v e e e e e e e e e 2437
dsparseMatrix-class 2438
dsRMatrix-class e e e e 2439
dsyMatrix-class 2440
dtCMatrix-class e 2441
dtpMatrix-class 2443
dtRMatrix-class 2444
dtrMatrix-class e e e e e 2445
expand-methods L. e e 2447

expm-methods L e 2449

XXXiii

externalFormats L 2450
facmul-methods 2452
fastMISC e 2453
forceSymmetric-methods 2457
formatSparseM L 2458
generalMatrix-class 2459
Hilbert e 2460
image-methods 2460
indexX-class L. e e e 2463
indMatrix-class 2463
invertPerm L e e e 2466
is.na-methods L 2467
is.null,DN e 2468
isSymmetric-methods L 2469
isTriangular-methods L 2471
KhatriRao e 2472
KNex . . . e e e e 2474
kronecker-methods 2475
IdenseMatrix-class e e 2475
IdiMatrix-class e e 2476
IgeMatrix-class e e e e 2477
IsparseMatrix-class L 2478
IsyMatrix-class 2479
IrMatrix-class o e e e e e e e e e 2480
lu-methods 2481
mat2triplet 2484
matmult-methods 2485
Matrix e e 2487
Matrix-Class e e e e e e e e 2489
Matrix-notyet e e 2491
MatrixClass e e e e e 2491
MatrixFactorization-class 2492
ndenseMatrix-class e e 2493
nearPD 2494
ngeMatrix-class L. e e e e 2497
nMatrix-class 2498
nnzero-methods L 2499
norm-methods L 2500
nsparseMatrix-class 2501
nsyMatrix-class L e e e e e 2503
ntrMatrix-class L. e 2504
pack-methods 2505
packedMatrix-class e 2506
pMatrix-class 2507
printSpMatrix L. e 2509
gr-methods L e 2512
rankMatriX e e e e e 2515
rcond-methods e e e 2517
rep2abl . .. L e 2519
rleDiff-class e 2520
ISPArSEMAtIIX . . o v v v e e e e e e e e e e e e e e e e 2521

RsparseMatrix-class L e 2522

XXX1V

Schur-class 2523
Schur-methods L 2525
solve-methods L 2526
sparse.model.matrix L. 2529
sparseLU-class L 2531
sparseMatrix L e e e 2533
sparseMatrix-class L 2536
sparseQR-class 2538
SPArSEVECIOT o i i e e e e e e e e e e e e 2542
sparseVector-classl 2543
SPMALIiX e 2546
subassign-methods L 2547
subscript-methods L. e e 2548
symmetricMatrix-class L. e 2549
symmpart-methods 2550
triangularMatrix-class L. 2551
TsparseMatrix-class 2552
unpackedMatrix-class oL 2553
updown-methods e 2554
USCounties o ot e e e e 2555
wrld_Ideg e 2556
18 The boot package 2559
abC.Cl . . e e 2559
100 1 0 2561
aids 2561
aircondit L L 2562
AMIS .« v o e e e e e e e e e e e 2563
aml ..o e 2564
beaver e 2565
bigeityo 2566
boot . . . e 2566
boot.array e 2572
DOOL.CI o o e 2573
brambles 2576
breslow 2577
calcium e 2578
CANC .« . v v v v e e e e e e e e e e e e e e e e e 2579
capability 2580
catsM . . . e 2580
CAV . b v v e e e e e e e e 2581
cdd . e 2582
cddmested L. e 2582
CensboOt 2583
channing 2587
claridge e e 2588
cloth e 2589
coransfer 2590
coal . .. e 2590
CONrol e 2591
COTT o v v v et e e e e e e e e e 2593
CUM3 . . . e e e 2594

XXXV

darwin oL 2596
dogs . .. e e 2597
downs.bc e e 2598
ducks . . . e 2599
EEFprofile e 2599
empinfo 2601
envelope L e e 2603
exp.tilt . . .o 2605
1 2607
freqarray e e e e e e e 2608
frets . . . e e e 2608
glmdiag L 2609
glm.diag.plots e e 2610
SIAVILY L e e e 2612
hirose L 2612
Imp.Estimates e e 2613
imp.weights 2615
INVIOZIt e e e e e e e 2617
islay . ..o 2617
jackafterboot 2618
k3dinear L. 2620
linear.approX L e e e e e 2621
lines.saddle.distn 2623
logit e 2624
MANAUS .+ &+ o v o v e 2625
melanoma L 2625
5100) 2626
NEUTO .+ v v v v v e 2627
nitrofen 2628
nodal L e 2629
10703553 T8 3 2630
nuclearo e 2631
paulsen e 2633
plotboot 2633
POISONS . . . o o o e e e e e e e e e e 2636
polar L e 2636
print.boot 2637
print.bootci L e e 2638
print.saddledistn Lo Lo 2639
print.simplex L. e e e e 2639
TEMISSION o v o e e 2640
saddle e e 2641
saddle.distn L. 2643
saddle.distn.object. 2646
salinity e 2647
SIMPIEX . . . L e e e e 2647
simplex.object e 2649
smooth.f L 2650
SUNSPOL . v v v v v i e 2652
SUrvival . .. L e e e e e e e e 2652
TAU . . L L e 2653

tiltboot 2654

XXXVI

tSbOOt e e e e e 2657
TUNA . . . o e e e e e e e e e 2660
UMNE . . v v vt e 2661
varlinear e e e e e e e e e 2662
WOOL . . o e e 2662
19 The class package 2665
batchSOM e 2665
CONAENSE . . . o .t e e e e e e e e e e e e e e e e 2666
knn ..o e e 2667
knn.ev . .o e e e e 2668
knnl . . . e 2669
vl . e 2670
Vg2 . e 2671
Vg3 . e 2672
Ivginit oL 2673
lvgtest L 2674
multiedit 2675
olvgl . . . e 2676
redUCe.nNn L e e e e e e 2677
SOM . . 2678
somgrid e 2679
20 The cluster package 2681
AZNES .+ o o o e e e e e e e e e e e e e e 2681
agnes.object 2685
agriculture Lo 2686
animals L e e e e e e e 2687
bannerplot L L e e e e 2688
chorSub 2690
clara L e e e 2691
clara.object L e e e e 2694
clusGap e e e e 2695
clusplot L e e e 2699
clusplot.default e 2700
coefhclust L e 2704
daisy . . .o e e e 2705
diana e e e 2708
dissimilarity.object L. e e e 2711
ellipsoidhull e 2712
fanny . .. L L e 2714
fanny.object L e 2716
flower e 2717
lower.to.upper.triinds L. 2718
medoids L e e e e e e 2719
0010 1 - P 2720
MONA.ObJECE e e e e e e e e 2722
PAML . . e e e e e e 2722
pam.objecto e e e e 2726
partition.object L e e e e 2728
plantTraits o e 2729
Plot.agnes e e e e e 2730

plot.diana e 2732

XXXVii

plotmona 2734
plotpartition 2735
PItree . . . oL e 2737
plutono 2738
predictellipsoid 2739
Print.agnes e e e e e e e e e e 2740
print.clara L e e e e 2741
print.diana e 2741
print.dissimilarity Lo 2742
print.fanny 2743
PriNt.MONA oL e e e e 2743
Print.pam e e e e e e 2744
TUSPINL . . . v v e 2744
silhouette L. 2745
SIZEDISS 2748
SUIMMATY.AZNES o v v v et e e e e e e e e e e 2749
summary.clara L. 2749
summary.diana Lo 2750
SUMMATY.INONA .+« & v v o v v e v v e e e e e e e e e e e e e e e e 2751
SUMMATY.PAM &« o & v v v v e e e e et e e e e e e e e e e e e e e 2751
twins.object 2752
volume.ellipsoid 2752
VOtES.TEPUD L e e e 2753
XClara ... L e e e e e 2754
21 The codetools package 2757
checkUsage e 2757
codetools e 2758
findGlobals 2760
showTree e 2760
22 The foreign package 2763
[oOKUP.XPOIt v v o e e e 2763
readarff . . . L. L 2764
read.dbf . . . Lo 2764
read.dta L e 2766
read.epiinfo 2767
read P L L e e e e e 2769
read.OCtave e e 2770
eAdLSPSS « . o e e 2770
read.ssd L 2774
read.SYStat e e e e e 2776
1ead.XPOTt . .« . o o e e e e e e e e 2777
S3read functions 2778
write.arff . .o 2779
write. dbf . . . L 2780
write. dta L e 2781
write.foreign. 2783
23 The lattice package 2785
A_Ol_Lattice e 2785
B_00_xyplot e 2788

B_Ol_xyplotts e e 2806

XXXViil

B_02 barchart.table e e e 2809
B_03_histogram e e e e e 2810
B_04_qgmath 2815
B_05_qq. . - - . o e e e 2818
B_06_levelplot 2820
B_07_cloud e 2826
B_08_splom e e 2831
B_09_ tmd 2835
B_10_rfs e 2836
B_ll_oneway e e e e e 2837
C_Ol1_trellis.device 0 o e e e 2838
C_02a_standard.theme e 2840
C_02b_trellis.par.get o o e e e e e e 2842
C_O03_simpleTheme 2845
C_04_lattice.optionso e e 2847
C_O5_print.trellis o e e e 2849
C_06_update.trellis 2852
C_O07_shingles e e 2855
D_draw.colorkey 2856
D_drawkey e 2857
D _level.colors e e 2858
D_make.groups L 2859
D_simpleKey 2860
D_strip.default 2861
D_trellis.object 2864
E_ interaction e 2865
F_1_panelbarchart e 2871
F_l_panelbwplot 2873
F_l_panelcloud. e 2875
F_1_paneldensityplot. 2879
F_l_paneldotplot 2881
F_l_panelhistogram e 2882
F_1_panellevelplot 2883
F_l_panelpairs 2885
F_l_panelparallel e 2888
F_1 _panel.qgmath 2890
F_l_panelstripplot 2891
F_1_panel.xyplot e 2892
F 2 1lines e 2895
F_2 panelfunctions. e 2899
F_2 panelloess e 2902
F_2 panel.qgmathline 2903
F_2_panel.smoothScatter 2904
F_2 panelspline e 2906
F_2_panel.superpose 2907
F_2 panel.violin e 2909
F_3_prepanel.default 2910
F_3_prepanel.functions 2912
G_axisdefault 2913
G_banking 2917
G_latticeParseFormula 2918

G_packet.panel.default L 2919

G_panel.axis e e 2920
G_panel.number. e e e e e 2922
G_ROWS e 2923
G_utilities.3d 2924
H_ barley e 2925
H_environmental 2926
H_ethanol e 2927
H melanoma e e 2928
H_singer. e 2929
H_USMortality e 2930
LIset . . . o e e 2932
24 The mgcv package 2933
ANOVAZAM . . . o . v v vt v e e e e e e e e e e e e e e 2933
bam e e e e 2935
bam.update 2941
bandchol 2943
betar L e 2944
blas.thread.test L e 2946
bug.reports.mgevl 2946
choldrop 2947
choosek 2948
Clog . .. e e 2951
CNOIMIL . .« ¢ vttt e e e ettt e e e e e e e e e e e e e 2953
columb e 2955
CONCUIVILY . . . v v v v it it e 2956
COX.Ph . . . e 2957
COX.pPht . . . 2961
CPOIS & v v e e e e e e e e e e e e e e e e e 2964
cSplineDes e 2965
dDeta 2966
dpnorm 2967
exclude.toofar L 2968
extract.Ime.cov 2969
factor.smooth L 2971
familymgev L. 2972
FFdes e 2974
fixfamilylinko 2975
fixDependence 2976
formula.gam e 2977
formXtVIX 2979
fsitest e e e e e 2980
full.score e e e e e e 2981
GAML . . . ot e e e e e e e e e e e e e e 2982
gam.check L L 2992
gam.control L e e e e 2994
GAML.CONVETZENCE . . « « v v v v v v e e e e e e e e e e e e e e e e e e 2996
gam.fit . . . 2998
gam.fit3 2999
gam.fitS.pOSt.ProC e 3001
gam.mh . .. e 3002
gam.models e e 3004

GAMLOULET .+ . o v v v v v v e 3011

x1

QAMLIEPATAINL .« . . v v v e 3012
gam.scale e e e 3013
gam.selection 3013
gam.side 3016
GAMLVCOMD .« « o v v v e v e 3018
gam20bjective L 3020
gamlss.etamu e e e e e e e e e 3021
gamlss.gH 3022
GAMIM . . . o v e vt e e e e e e e e e e e e e e e e e e 3023
gammals e e e e e e e 3029
gamODbJECt e e e e e 3031
SAMSIM e e e 3034
aUlSS . . oL e e e e 3035
GELVAL . . . L i e e e e e e e e 3036
eVISS . . e 3037
gfam . . . L e 3039
ginla . . . e 3041
gumbls . . . L L e e e e e 3045
identifiability 3046
ILOUEL . . L o o e e 3047
influence.gam L L e 3048
nitial.spo 3049
inSide 3050
INEETPIEt.AM o v v v ot e e e e e e e e e e e e e e e e e e 3051
JAZAM . . . L. e e e e e e e 3052
kicheck . . . oL 3056
IdetS 3058
IdTweedie 3059
linearfunctional.terms 3060
loglik.gam L 3064
D 3066
IS.S1Ze o e 3068
MAZIC e 3068
MAZIC.POSEPIOC .« . o v v v o e i e et e e e e e e e e e e 3073
mchol o 3074
mgev.FAQ . . . e 3075
mgev.package L. 3077
mgev.parallel e 3079
MINLIOOLS v v v v i bt et e e e e 3081
missing.data e 3082
model.matrix.gam 3083
MONO.COM + . v v v v v e e e e e e e e e e e e e et e e e e e e 3084
0 40 3085
multinom e e e 3086
00110 PP 3088
NCV .« 3089
negbin 3092
NEW.NAME . .« . o v v v e e e e e e e e e e e e e e e e e e 3094
NOtEXp e 3095
notEXp2 . . . L 3096
null.space.dimension 3098

OCAL . . o i o e e e e e e 3099

one.se.rule e 3100
PCIS o e e 3101
pdldnot 3105
pdTens e e e 3106
penedf . ..o 3107
placeknots 3108
plot.gam e e e e e e e e 3109
polys.plot 3114
predict.bam 3115
predict.gamo L e e e e 3118
Predict.matrix oL 3124
Predict.matrix.cr.smooth o 3125
Predict.matrix.soap.film 3126
Print.gam e e e e 3128
psum.chisq 3129
QQeAM .« . v e e e e e e e e e e e e e 3131
random.effects 3133
residuals.gam L L e e 3135
TIZ . o e 3136
TIOVIL . o v vt e 3138
Rrank o e 3139
rTweedie L e 3140
S e e e 3141
SCAL . v v e e e e e e e e e 3143
sdiago 3144
shash o 3145
singledndex L e e e 3148
SLINITED . . . o oo o 3149
SLrepara e e e e e e e 3150
SLSEtUp o e 3151
slanczos e 3152
SMoOoth.COnStruct e 3153
smooth.construct.ad.smooth.speco oo 3158
smooth.construct.bs.smooth.spec Lo 3160
smooth.construct.cr.smooth.spec 3163
smooth.construct.ds.smooth.spec Lo 3165
smooth.construct.fs.smooth.spec o Lo 3168
smooth.construct.gp.smooth.spec L o 3170
smooth.construct.mrf.smooth.spec L. 3173
smooth.construct.ps.smooth.speco 3175
smooth.construct.re.smooth.spec L 3178
smooth.construct.so.smooth.spec oL 3180
smooth.construct.sos.smooth.spec Lo 3186
smooth.construct.sz.smooth.spec o Lo 3189
smooth.construct.t2.smooth.spec oL oo 3191
smooth.construct.tensor.smooth.spec Lo 3192
smooth.construct.tp.smooth.speco 0oL Lo 3193
smooth.nfo 3196
SMOOth.terms e e e 3197
smooth2randomo e 3200
smoothCon e 3202

SPVCOV o v o v e e e e e e e e e e e e e e e e e 3205

xlii

SPASMLCONSIIUCE .« . . . v v v v ettt e e e e e e e e e e e e 3206
SEEP.ZAIM .+« v v e e e e e e e e e e e e e e e e e 3207
SUMMATY.ZAML . .« o . v v v v v e v e 3208
1 3212
1€ o e e 3216
tensor.prod.model.matrixo 3220
totalPenaltySpace 3222
trichol e 3223
trind.generator L. e e e e e e e e 3224
Tweedie e e 3225
tWISS . o o e e e e e e e 3227
UNIqUECOMDS e e e e e e 3229
VCOV.ZAIMN + v v v v v e 3230
VIS.ZAM . . . L e e e e e e e e e e e 3232
XWXd . . 3234
ZIP . e 3237
ZIPISS . . 3239
25 The nlme package 3243
ACF . . e 3243
ACFEgls . . . o e 3244
ACEIme 3245
Alfalfa L 3246
allCoef L e 3247
anova.gls ... 3248
anova.me L L e e 3250
aS.MAtriX.COrStIUCt o o o e e e e e e e e e e 3252
as.matrix.pdMat 3253
as.matrixX.reStruct e e e 3254
asOneFormula 3255
ASSAY . .o e 3256
asTable e e e e 3256
augPred L 3257
balancedGrouped e e 3259
bdf . . e 3260
BodyWeight 3261
Cefamandole e e 3262
Coef . . . e e e 3263
coefcorStruct 3263
coef.gnls L e e 3264
coefllme L 3265
coefdmList 3267
coef.modelStruct e 3268
coef.pdMat 3269
coefreStruct 3270
coefovarFunc o L 3271
collapse e e 3272
collapse.groupedData 3273
compareFits 3274
comparePred L 3275
CorARIL . . . e 3277
corARMA e 3278

corCARL e e e 3280

COrClIasses v v i i i 3281
corCompSymm e e e e e e e e e 3282
COtEXp e 3283
corFactor 3285
corFactor.corStruct L 3286
CorGaus e e e e e 3287
corLin Lo 3288
COrMAtIiX v ot e e e e e e e e e e e e 3290
corMatrix.corStruct e e 3291
corMatrix.pdMat e e 3292
COrMatrix.reStruct e e e e e e 3293
corNatural 3294
corRatio e 3295
corSpatial L. 3296
corSpher 3298
COTSYMIM v it e et e e e e e e e e e e e e e 3300
Covariate e e e e e e e e e e e e 3301
Covariate.varFunco 3302
Dialyzer e 3303
Dim 3303
Dim.corSpatial e 3304
Dim.corStruct e 3305
Dim.pdMat e 3306
Earthquake e 3307
ergoStool . . . oL L e e e 3307
Fatigue 3308
fdHess e 3309
fitted.glsStruct L 3310
fitted.gnlsStruct L e e e 3310
fitteddme e 3311
fitted.ImeStruct e 3312
fitted.ImList 3313
fitted.nlmeStruct 3314
fixed.effects L 3315
fixefImList e 3316
formula.pdBlocked 3316
formula.pdMat 3317
formula.reStruct 3318
gapply . . .o 3319
Gasoline 3320
getCovariate e e e e 3321
getCovariate.corStruct 3321
getCovariate.data.frame L. 3322
getCovariate.varFunc 0oL 3323
getCovariateFormula L 3324
getData L e e e 3325
getData.gls L 3325
getDatadlme L 3326
getData.ImList L 3327
GEtGIOUPS o e e e e e 3327
getGroups.CorStruct L. e e e e 3328

getGroups.data.frame L e 3329

xliv

getGroups.gls 3330
getGroups.dme L. 3331
getGroups.ImList 3332
getGroups.varFunc oo 3333
getGroupsFormula Lo 3334
getResponse 3335
getResponseFormula 3336
getVarCov L. 3336
gls e 3337
glsControl e e e e e 3339
glsObject e 3341
glsStruct L 3342
GIUCOSE o e 3342
Glucose2 L e e 3343
gnlS .. 3343
gnlsControl 3345
gnlsObject 3347
gnlsStruct e e e e 3348
groupedData 3349
GSUMIMALY « . o ¢ v v e v v e 3351
GUN . .. e 3353
IGF . . . e 3353
Initialize 3354
Initialize.corStruct 3355
Initialize.glsStruct L 3356
Initialize.ImeStruct 3356
Initialize.reStruct L. 3357
Initialize.varFunc 3358
intervalS L 3359
intervals.gls 3360
intervalsdme 3361
intervalsdmListo 3362
isBalanced 3363
islnitializedo 3364
LDEsysMat e e e e e e 3365
Ime e 3366
Ime.groupedData 3369
ImedmList 3371
ImeControl L 3373
ImeObject e e e e e 3375
ImeStruct 3376
ImList oo 3377
ImList.groupedData e e 3378
logDet 3379
logDet.corStruct L e e 3380
logDet.pdMat e e e 3381
logDet.reStruct 3381
loglik.corStruct 3382
logLik.glsStruct e 3383
loglik.gnls e 3384
loglik.gnlsStruct 3385

logLik.me e e 3385

loglik.dmeStruct 3386
logLik.ImList o e 3387
logLlikreStruct L 3388
loglik.varFunc 0oL 3389
Machines 3390
MathAchieve e 3391
MathAchSchool 3391
Matrix e e e 3392
Matrix.pdMat oL 3392
Matrix.reStruct e e e e e 3393
Meat e e e e 3394
Milk . . .o e 3395
model.matrix.reStruct 3395
Muscle e e 3396
NAMeSs v vt e 3397
Names.formula 3398
Names.pdBlocked 3399
Names.pdMat e e 3400
Names.reStruct e 3401
needUpdate L 3402
needUpdate.modelStruct L. 3402
Nitrendipene 3403
nlme 3404
nlme.nlsList o 3406
nlmeControl 3409
nlmeObject 3410
nlmeStruct e 3412
nIsList e e e e 3413
nlsList.selfStart 3415
0ats . . . e e 3416
Orthodont e e e e e e 3417
OVary . . . o e e e e e 3417
Oxboys e 3418
Oxide e 3419
pairs.compareFits L e 3419
pairs.me L. 3420
pairs.ImListo 3422
PBG . . . e 3423
pdBlocked 3424
pAClasses e e e e e e 3425
pdCompSymm e e 3426
pdConstruct 3427
pdConstruct.pdBlocked 3428
pdDiag.o 3430
pdFactor 3431
pdFactorreStruct e 3432
pdldent 3433
pdLogChol e 3434
pdMat . . o e e 3436
PAMatrix e e 3437
pAMatrix.reStruct L e e e e 3438

pdNatural oL e 3439

xIvi

pASymmo 3440
Phenobarb e 3442
phenoModel 3443
Pixel e 3444
plot ACF e 3444
plotaugPred L 3445
plot.compareFits e 3446
plot.gls . . .o 3447
plotintervals.ImListo 3449
plot.Ime e e 3450
plot.ImList 3451
plotnffGroupedData L 3453
plot.nfnGroupedData 3454
plot.nmGroupedData 3456
plotraneflme 3458
plotranefdmList 3460
plot.Variogram 3461
pooledSD e e 3462
predict.gls 3463
predict.gnls 3464
predictlme e 3465
predict.ImList 3466
predictnlmeo 3467
print.summary.pdMat L. e 3469
print.varFunco 3470
qqnorm.gls e e e 3470
ggnorm.Ime L e e e 3472
Quinidine e 3473
quinModel e e e 3474
Rail e 3475
randome.effects L. 3476
ranef.lme 3476
ranefdmblist L 3478
RatPupWeight 3479
recalc e 3480
recalc.corStruct L e 3481
recalc.modelStruct L. L 3482
recalcreStruct L L 3483
recalc.varFunc L. oL 3483
Relaxin e 3484
Remifentanil 3485
residuals.gls 3486
residuals.glsStruct L 3487
residuals.gnlsStruct 3488
residuals.dme oL 3489
residuals.lmeStruct oL 3490
residuals.ImList 3491
residuals.nlmeStruct Lo 3492
TESTIUCE .« . . o v o v e e e e e 3493
simulate.lme L L L 3495
solve.pdMat L. e 3496

solvereStruct e e e 3497

Soybean
splitFormula
SPruCe o o e e
SUMMAry.COrStIUCt o vttt e e e e e e e e e e
summary.glso e e
summary.lme e e e
summary.ImList e
summary.modelStruct L e
summary.nlsList
summary.pdMato e e e e
summary.varFunc oL L Lo
Tetracyclinel e
Tetracycline2 e e e e e e
update.modelStruct e e e e
update.varFunc oL
varClasses e
varComb e
varConstPower L
varConstProp L L e
VarCorr e e
varEXp e
varFixed L L
varFunco L
varldent L
Variogramo e e e e e e e
Variogram.corEXp e
Variogram.corGaus e e e e e e e e
Variogram.corLin L e
Variogram.corRatio e
Variogram.corSpatial
Variogram.corSpher L.
Variogram.default
Variogram.gls L
Variogram.Ime
varPower L e
varWeights oL
varWeights.glsStruct
varWeights.ImeStruct L
Wafer e e
Wheat e e e
Wheat2 e e e
[pdMat e e

26 The nnet package
classind L.
multinom e e e
NNEL o e e e e e e e e e e e e
nnetHess e e
predictnnet e
which.ds.max

27 The rpart package
cartest.frame L L L e e e

x1viii

car90 . .. e 3550
CULSUMMALY « « & v v v v e e et e e e e e e e e e e e e e e e e e 3552
kyphosis 3553
labels.rpart 3553
MEANVALIPAIT v v o ettt e e e e e e e e e e e e 3554
NATPATT . o o o oot e e e e e e e e e 3555
pathurpart e e e e e e 3556
plotrpart e e e e e e e e 3557
PIOLCD .« o o e e e e 3558
POSLIPAIT o o e e e e e e e e e e e e e 3559
predictapart e e e e e e e e 3560
Printrpart e e e e e e e e e 3562
PIINECP .« . o o e e e e e e e e 3563
PIUNE.IPATt . . o . v v o o v o e 3564
residuals.rpart L e e e e 3565
TPATE . o o e 3566
rpart.controlo L. e e e e e e 3567
TPATEEXD « v v v v e 3569
rpart.object L e e e 3569
TSQIPATT © . v v v v e 3571
SMP.IPAT . . o v o e e e e e e e e e e e 3572
solderbalance L 3573
SLAZEC . .t e e e e e e e e e 3574
SUMMATY.IPATL . . o o v v v v v e 3574
TEXLIPATE .« o v v o v e 3575
Xpreduapart oL L e e e e e e e e e e e 3577
28 The spatial package 3579
anova.trls ... oL e 3579
COITElOZram v it e e e e e e e 3580
BXPCOV & v v v v e 3581
Kaver e 3582
Kenvl . . . o . e 3583
3 3584
PPEEIEZION e e e e 3585
PPINIE . . . L e 3585
PPl . . 3586
PPregION e e 3587
predict.trls L. 3587
PIMato e e e e e e e 3588
Psim . . . e 3589
SEMAL . .« v vt e e e e e e e e e e e e e e 3590
SO . 3591
STAUSS . . o v o e e e e e 3592
surf.gls . .. e 3593
surfls .. oL 3594
trlsinfluence oL 3595
trMat oo e e e e e 3596
VArlOZIaMl . . . o v v v e e e e e e e e e e e e e e e e 3597
29 The survival package 3599
QATEZ . .« « o e e e e e e e e e e e e e e e e 3599

ABASUIV .« . L e e e e e 3602

aggregate.surviit L. L 3603
agreg.fit e e 3604
aml ..o e e 3605
anova.coxph L e e e 3605
attrasSign e e e e e e e e 3606
basehaz e 3608
bladder 3609
blogit e 3610
briero 3611
CCh . L L e 3612
cgd . . e 3615
cgdO . . L 3616
CIPOISSOM . . v v v v v i et et e e e e e e e e e e e e e 3617
clogit e 3618
CluSter e 3620
colon e 3620
CconCcordance oo e 3622
concordancefit 3625
cox.zph . . .o 3626
COXPh . . . e 3628
coxph.control e e 3633
coxphudetail L 3634
coxph.object 3636
COXPhLWEESEt e e e e 3637
coxphms.object 3638
COXSUrV.fit L L 3638
diabetic e 3640
dsurvrego L e e e 3641
finegray e e e e 3642
flchain 3644
frailty 3646
EDSE . e e 3648
heart e 3649
hoel e 3650
isratetable L. L 3651
kidney 3651
levels.Surv. 3652
lines.survfit 3653
logan L 3655
loglik.coxph o 3656
lung . . . e 3657
MEUS .« v v et e e e e e e e e e e e e e e 3658
MEUS2 . o o e e e e e e e e e e e e e e e e e e e 3659
model.frame.coxph L 3660
model.matrix.coxph 3661
myeloid L e 3662
myeloma 3663
nafld e 3664
neardate L e e 3665
NSK . . e e 3667
DWECO . o o oo e e e e e e e e e e 3669

PDCSEq .« o o e e e e e 3672
plotaarego e e e e 3673
plot.cox.zph e e 3674
plotsurvfit 3675
predict.coxph L 3678
Predict.SUrvreg e e e e e e e e 3681
Printaareg 3682
print.summary.cCoxph 3683
Print.SUMMATY.SUTVEXP . « « v v v v v e e e e e e e e e e e e e e e e e 3684
print.summary.surviit Lo 3684
print.surviit 3685
pseudo . . .o L e e 3686
pspline 3688
PYCAIS .« v v v i e e e e e e e 3690
quantile.survfito L Lo e 3692
ratetable L. L e 3694
ratetableDate 3695
ratetables L L L L e 3695
TALS . . o e e e e e e e 3696
TALS2 . . e e e 3697
reliability 3697
residuals.coxpho 3699
residuals.survfito Lo 3701
residuals.survreg L L. L 3702
retinopathy 3703
rhDNase e 3704
ridge e 3706
rotterdam L e 3707
TOYSIOI . . . o vttt e e e e e 3708
rtright © . o L 3710
solder e 3711
stanford2 L e e 3712
statefigo 3713
SLHAtA e e e e e e e e e 3715
SUMMATY.QATEZ .« « « v o o v v e v v e e e e e e e e e e e e e e e e e e e 3716
SUMMAary.CoXph e e 3717
SUMMATY.PYCATS .« « . v v v v v e v v e e e e e e e e e e e e e e e e e 3718
SUMMATY.SUIVEXD « « v ¢ v v v e v v e e e e e e e e e e e e e e e e e e 3720
summary.surviito L e e e e e 3721
SULV . o e e 3723
Surv-methods 3725
SUIVZ L e 3727
Surv2data L L e e e e e 3728
surveheck L 3729
SUrVEONdense e e e e e 3731
survdiff . ..o L 3732
SUIVEXD .« v v o o e e e e e e e e e e e e e e e e e 3734
survexp.fit e 3737
SUIVEXP.ODJECt o L e 3738
SUrvVEIt . . L L e e 3739

survfit.coxph L 3740

Index

li

survfitformula o o o 3743
surviitmatrix 3748
survfit.object L e 3749
surviitD . . . L e e 3751
survfitcoxphfito 3752
survival-deprecated L. 3754
SULVODIIEN o o v vttt e e e 3754
SUIVICZ .« v v v vt v e 3756
survreg.control L. 3758
survreg.distributions L L 3758
SUIVIEZ.ODJECt e e e 3760
survregDtest Lo L 3761
SUrvSPplit e e e 3762
ICUL . L L 3764
timeline e e e 3765
TMEIZE o o o e e e e e e e e e e e e e 3766
10] 0311 3768
transplant L L e e e e e 3769
udca 3770
untangle.specials Lo L 3771
USPOP2 « v o v e 3772
VCOV.COXPh . . . o o e 3773
VELETAM . . . o ot b i i e e e e e e e 3773
xtfrm.Survo 3774
YAES . .. e e e e 3775
VAES_SCIUP . .« ¢ o vt e 3776

3779

lii

Part 1

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use 1ibrary (help = "base").

.bincode Bin a Numeric Vector

Description

Bin a numeric vector and return integer codes for the binning.

Usage

.bincode (x, breaks, right = TRUE, include.lowest = FALSE)

Arguments
X a numeric vector which is to be converted to integer codes by binning.
breaks a numeric vector of two or more cut points, sorted in increasing order.
right logical, indicating if the intervals should be closed on the right (and open on the

left) or vice versa.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included in the first (or last) bin.

4 .Device

Details

This is a ‘barebones’ version of cut.default (labels = FALSE) intended for use in other
functions which have checked the arguments passed. (Note the different order of the arguments
they have in common.)

Unlike cut, the breaks do not need to be unique. An input can only fall into a zero-length
interval if it is closed at both ends, so only if include.lowest = TRUE and it is the first (or last
for right = FALSE) interval.

Value

An integer vector of the same length as x indicating which bin each element falls into (the leftmost
bin being bin 1). NaN and NA elements of x are mapped to NA codes, as are values outside range
of breaks.

See Also

cut, tabulate

Examples

An example with non-unique breaks:
x <- c¢(0, 0.01, 0.5, 0.99, 1)
b <- c¢c(0, 0, 1, 1)

.bincode (x, b, TRUE)
.bincode (x, b, FALSE)
.bincode (x, b, TRUE, TRUE)
.bincode (x, b, FALSE, TRUE)

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the ac-
tive device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base
namespace.

Usage

.Device
.Devices

Details

.Device is a length-one character vector.

.Devices is apairlist of length-one character vectors. The first entry is always "null device™",
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "" until the device number is
reused.

Devices may add attributes to the character vector: for example devices which write to a file may
record its path in attribute "filepath".

.Machine

.Machine

Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations of R
use 32-bit integers and use IEC 60559 floating-point (double precision) arithmetic, the "integer"
and "double" related values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e—324.

Value

A list with components

double.

eps

the smallest positive floating-point number x such that 1 +x !=1.
It equals double.base " ulp.digits if either double.base is
2 or double.rounding is 0; otherwise, it is (double.base "
double.ulp.digits) / 2. Normally 2.220446e-16.

double.neg.eps

double.

double.

double.
double.

double.

xmin

Xmax

base

a small positive floating-point number x such that 1 -x !=1. It
equals double.base ”~ double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base
~ double.neg.ulp.digits) /2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by - (double.digits +
3), double.neg.eps may not be the smallest number that can alter 1 by
subtraction.

the smallest non-zero normalized floating-point number, a power of the radix,
i.e.,double.base » double.min.exp. Normally 2.225074e-308.

the largest normalized floating-point number. Typically, it is equal to (1 -
double.neg.eps) double.base ~ double.max.exp, but on some
machines it is only the second or third largest such number, being too small by
1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

the radix for the floating-point representation: normally 2.

digits

the number of base digits in the floating-point significand: normally 53.

rounding

the rounding action, one of
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;

.Machine

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.

Normally 5.

double.guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and 0 otherwise.
Normally 0.
double.ulp.digits
the largest negative integer i such that 1 + double.base ~ 1 != 1, except
that it is bounded below by — (double.digits + 3). Normally -52.
double.neg.ulp.digits
the largest negative integer i such that 1 - double.base ~ i !=1, except
that it is bounded below by — (double.digits + 3). Normally -53.
double.exponent
the number of bits (decimal places if double.base is 10) reserved for the
representation of the exponent (including the bias or sign) of a floating-point
number. Normally 11.
double.min.exp
the largest in magnitude negative integer i such that double.base ~ 1 is
positive and normalized. Normally —1022.
double.max.exp
the smallest positive power of double .base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 23! — 1 = 2147483647.

sizeof.long the number of bytes in a C ‘long’ type: 4 or 8 (most 64-bit systems, but not
Windows).

sizeof.longlong
the number of bytes in a C ‘1long long’ type. Will be zero if there is no such
type, otherwise usually 8.

sizeof.longdouble
the number of bytes in a C ‘1long double’ type. Will be zero if there is no
such type (or its use was disabled when R was built), otherwise possibly 12
(most 32-bit builds), 16 (most 64-bit builds) or 8 (CPUs such as ARM where
for most compilers ‘1long double’ is identical to double).

sizeof.pointer
the number of bytes in the C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

sizeof.time_t
the number of byfes in the C time_t type: a 64-bit time_t (value
8) is much preferred these days. Note that this is the type used by
code in R itself, not necessarily the system type if R was configured with
‘~—with-internal-tzcode’ as also used on Windows.

longdouble.eps, longdouble.neg.eps, longdouble.digits, ...
introduced in R 4.0.0. When capabilities ("long.double") is
true, there are 10 such "longdouble.kind" values, specifying the ‘long
double’ property corresponding to its "double. " counterpart. See also
‘Note’.

.Platform 7

Note

In the (typical) case where capabilities ("long.double") is true, R uses the ‘long
double’ C type in quite a few places internally for accumulators in e.g. sum, reading non-
integer numeric constants into (binary) double precision numbers, or arithmetic such as x $% v;
also, ‘long double’ can be read by readBin.

For this reason, in that case, .Machine contains ten further components, longdouble.eps,
*.neg.eps, x.digits, . rounding x.guard, x.ulp.digits, r.neg.ulp.digits,
*.exponent, *.min.exp, and *.max.exp, computed entirely analogously to their
double. x counterparts, see there.

sizeof.longdouble only tells you the amount of storage allocated for a long double. Often
what is stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used
on the platform — this seems to be the case for the common R platforms using ix86 and x86_64
chips. There are other implementation of long double, usually in software for example on Sparc
Solaris and AIX.

Note that it is legal for a platform to have a ‘longdouble’ C type which is
identical to the °‘double’ type — this happens on ARM CPUs. In that case
capabilities ("long.double") will be false but on versions of R prior to 4.0.4,
.Machine may contain "longdouble. kind" elements.

Source
Uses a C translation of Fortran code in the reference, modified by the R Core Team to defeat over-
optimization in modern compilers.

References
Cody, W.J. (1988). MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14(4), 303-311. doi:10.1145/50063.51907.

See Also

.Plat form for details of the platform.

Examples

.Machine
or for a neat printout
noquote (unlist (format (.Machine)))

.Platform Platform Specific Variables

Description
.Platform is a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.

Usage

.Platform

https://doi.org/10.1145/50063.51907

8 .Platform

Value

A list with at least the following components:

0S.type character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

file.sep character string, giving the file separator used on your platform: " /" on both
Unix-alikes and on Windows (but not on the former port to Classic Mac OS).

dynlib.ext character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11" on Windows and ".so" or ".s1" on Unix-alikes.
(Note for macOS users: these are shared objects as loaded by dyn . load and
not dylibs: see dyn.load.)

GUI character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘—g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on ma-
cOS), "Rgui" and "RTerm" (Windows) and perhaps others under alternative
front-ends or embedded R.

endian character string, "big" or "1ittle", giving the ‘endianness’ of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

pkgType character string, the preferred setting for options ("pkgType™). Values
"source", "mac.binary" and "win.binary" are currently in use.

This should not be used to identify the OS.

path.sep character string, giving the path separator, used on your platform, e.g., ": "
on Unix-alikes and "; " on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

r_arch character string, possibly "". The name of an architecture-specific directory
used in this build of R.

AQUA
.Platform$GUI is set to "AQUA" under the macOS GUI, R. app. This has a number of conse-
quences:
* ‘/usr/local/bin’ is appended to the PATH environment variable.
* the default graphics device is set to quartz.

* selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

HTML help is displayed in the internal browser.

* the spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled. osVersion may give more details about the platform R is running on.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

capabilities and extSoftVersion (and links there) for availability of capabilities partly
external to R but used from R functions.

abbreviate 9

Examples

Note: this can be done in a system-independent way by dir.exists()
if (.Platform$0S.type == "unix") {
system.test <- function(...) system(paste("test", ...)) == 0L
dir.exists2 <- function(dir)
sapply (dir, function(d) system.test ("-d", d))

dir.exists2(c(R.home (), "/tmp", "~", "/NO")) # > T T T F
}
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict = TRUE.

Usage
abbreviate (names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"), named = TRUE)
Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.

use.classes logical: should lowercase characters be removed first?

dot logical: should a dot (" . ") be appended?
strict logical: should minlength be observed strictly? Note that setting strict =
TRUE may return non-unique strings.
method a character string specifying the method used with default "1eft . kept", see
‘Details’ below. Partial matches allowed.
named logical: should names (with original vector) be returned.
Details

The default algorithm (method = "left .kept") used is similar to that of S. For a single string
it works as follows. First spaces at the ends of the string are stripped. Then (if necessary) any
other spaces are stripped. Next, lower case vowels are removed followed by lower case consonants.
Finally if the abbreviation is still longer than minlength upper case letters and symbols are
stripped.

Characters are always stripped from the end of the strings first. If an element of names.arg
contains more than one word (words are separated by spaces) then at least one letter from each
word will be retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space.

10 abbreviate

Value

A character vector containing abbreviations for the character strings in its first argument. Duplicates
in the original names . arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic internal
abbreviate () algorithm is applied to the characterwise reversed strings; if there are still du-
plicated abbreviations and if strict = FALSE as by default, minlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all unique
elements of names . arg have unique abbreviations.

If names is true, the character version of names . arg is attached to the returned value as a name s
attribute: no other attributes are retained.

If a input element contains non-ASCII characters, the corresponding value will be in UTF-8 and
marked as such (see Encoding).

Warning

If use.classes is true (the default), this is really only suitable for English, and prior to R 3.3.0
did not work correctly with non-ASCII characters in multibyte locales. It will warn if used with
non-ASCII characters (and required to reduce the length). It is unlikely to work well with inputs
not in the Unicode Basic Multilingual Plane nor on (rare) platforms where wide characters are not
encoded in Unicode.

As from R 3.3.0 the concept of ‘vowel’ is extended from English vowels by including characters
which are accented versions of lower-case English vowels (including ‘o with stroke’). Of course,
there are languages (even Western European languages such as Welsh) with other vowels.

See Also

substr.

Examples

x <= c("abcd", "efgh", "abce")
abbreviate (x, 2)
abbreviate (x, 2, strict = TRUE) # >> 1lst and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
stopifnot (identical (unname (st.abb),

abbreviate (state.name, 2, named=FALSE)))
table (nchar (st.abb)) # out of 50, 3 need 4 letters
as <- abbreviate (state.name, 3, strict = TRUE)
as[which(as == "Mss")]

and without distinguishing vowels:
st.abb2 <- abbreviate (state.name, 2, FALSE)

cbind(st.abb, st.abb2) [st.abb2 != st.abb,]
method = "both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate (state.name, 2, method = "both")

table (nchar (st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

agrep

11

agrep

Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the
string x (the second argument) using the generalized Levenshtein edit distance (the minimal possi-
bly weighted number of insertions, deletions and substitutions needed to transform one string into

another).
Usage
agrep (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, value = FALSE, fixed = TRUE,

useBytes = FALSE)

agrepl (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, fixed = TRUE, useBytes = FALSE)

Arguments

pattern

max.distance

costs

ignore.case

value

a non-empty character string to be matched. For fixed = FALSE this should
contain an extended regular expression. Coerced by as.character to a
string if possible.

character vector where matches are sought. Coerced by as.character toa
character vector if possible.

maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length times the maximal transformation cost (will be
replaced by the smallest integer not less than the corresponding fraction), or a
list with possible components

cost: maximum number/fraction of match cost (generalized Levenshtein dis-
tance)

all: maximal number/fraction of all transformations (insertions, deletions and
substitutions)

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If cost is not given, all defaults to 10%, and the other transformation number
bounds default to all. The component names can be abbreviated.

a numeric vector or list with names partially matching ‘insertions’,
‘deletions’and ‘substitutions’ giving the respective costs for comput-
ing the generalized Levenshtein distance, or NULL (default) indicating using unit
cost for all three possible transformations. Coerced to integer viaas . integer
if possible.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

12 agrep
fixed logical. If TRUE (default), the pattern is matched literally (as is). Otherwise, it
is matched as a regular expression.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

Details

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string
into another.

This uses the t re code by Ville Laurikari (https://github.com/laurikari/tre), which
supports MBCS character matching.

The main effect of useBytes = TRUE is to avoid errors/warnings about invalid inputs and spurious
matches in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is
forced if any input is found which is marked as "bytes" (see Encoding).

Value

agrep returns a vector giving the indices of the elements that yielded a match, or, if value is
TRUE, the matched elements (after coercion, preserving names but no other attributes).

agrepl returns a logical vector.

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements. See also
adist in package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version in R < 2.10.0 by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep, adist. A different interface to approximate string matching is provided by aregexec ().

Examples
agrep ("lasy", "1 lazy 2")

agrep ("lasy", c(" 1 lazy 2", "1 lasy 2"), max.distance = list(sub = 0))

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2)

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2, value = TRUE)

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max.distance = 2, ignore.case = TRUE)

"

https://github.com/laurikari/tre

all 13

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur

if na.rm=FALSE and . . . contains no FALSE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

Note

That all (logical (0)) is true is a useful convention: it ensures that
all(all(x), all(y)) == all(x, Vv)
even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

14 all.equal

See Also

any, the ‘complement’ of al1, and stopifnot (*) whichisanall (%) ‘insurance’.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")
all(logical(0)) # true, as all zero of the elements are true.
all.equal Test if Two Objects are (Nearly) Equal
Description

all.equal (x, y) is a utility to compare R objects x and y testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Do
notuse all.equal directly in if expressions—either use 1sTRUE (all.equal(....)) or
identical if appropriate.

Usage
all.equal (target, current, ...)

Default S3 method:
all.equal (target, current, ..., check.class = TRUE)

S3 method for class 'numeric'
all.equal (target, current,

tolerance = sqgrt (.Machine$double.eps), scale = NULL,
countEQ = FALSE,
formatFUN = function(err, what) format (err),

., check.attributes = TRUE, check.class = TRUE, giveErr = FALSE)

S3 method for class 'list'
all.equal (target, current, ...,
check.attributes = TRUE, use.names = TRUE)

S3 method for class 'environment'
all.equal (target, current, all.names = TRUE,
evaluate = TRUE, ...)

S3 method for class 'function'
all.equal (target, current, check.environment=TRUE, ...)

S3 method for class 'POSIXt'
all.equal (target, current, ..., tolerance = le-3, scale,
check.tzone = TRUE)

attr.all.equal (target, current, ...,
check.attributes = TRUE, check.names = TRUE)

all.equal

Arguments

target

current

tolerance

scale

countEQ

formatFUN

15

R object.
other R object, to be compared with target.

further arguments for different methods, notably the following two, for numeri-
cal comparison:

numeric > 0. Differences smaller than tolerance are not reported. The
default value is close to 1. 5e-8.

NULL or numeric > 0, typically of length 1 or length (target). See ‘De-
tails’.

logical indicating if the target == current cases should be counted when
computing the mean (absolute or relative) differences. The default, FALSE may
seem misleading in cases where target and current only differ in a few
places; see the extensive example.

a function of two arguments, err, the relative, absolute or scaled error, and
what, a character string indicating the kind of error; may be used, e.g., to format
relative and absolute errors differently.

check.attributes

check.class

giveErr

use.names

all.names

evaluate

logical indicating if the attributes of target and current (other than
the names) should be compared.

logical indicating if the data.class () of target and current should be
compared.

logical indicating if the result should contain the numerical error as an
"err" attribute.

logical indicating if 1ist comparison should report differing components by
name (if matching) instead of integer index. Note that this comes after . . . and
so must be specified by its full name.

logical passed to 1s indicating if “hidden” objects should also be considered in
the environments.

for the environment method: logical indicating if “promises should be
forced”, i.e., typically formal function arguments be evaluated for comparison.
If false, only the names of the objects in the two environments are checked for
equality.

check.environment

check.tzone

check.names

Details

logical requiring that the environment () s of functions should be compared,
too. You may need to set check.environment=FALSE in unexpected
cases, such as when comparing two nls () fits.

logical indicating if the "t zone" attributes of target and current should
be compared.

logical indicating if the names (.) of target and current should be com-
pared.

all.equal is a generic function, dispatching methods on the target argument. To see the
available methods, use methods ("all.equal"), but note that the default method also does
some dispatching, e.g. using the raw method for logical targets.

16

all.equal
Remember that arguments which follow ... must be specified by (unabbreviated) name. It is
inadvisable to pass unnamed arguments in . . . as these will match different arguments in different

methods.

Numerical comparisons for scale = NULL (the default) are typically on a relative difference scale
unless the target values are close to zero or infinite. Specifically, the scale is computed as the
mean absolute value of target. If this scale is finite and exceeds tolerance, differences are
expressed relative to it; otherwise, absolute differences are used. Note that this scale and all fur-
ther steps are computed only for those vector elements where target is not NA and differs from
current. If countEQ is true, the equal and NA cases are counted in determining the “sample”
size.

If scale is numeric (and positive), absolute comparisons are made after scaling (dividing) by
scale. Note that if all of scale is close to 1 (specifically, within le-7), the difference is still
reported as being on an absolute scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

The 11ist method compares components of target and current recursively, passing all other
arguments, as long as both are “list-like”, i.e., fulfill either is.vectororis.list.

The environment method works via the 1ist method, and is also used for reference classes
(unless a specific all.equal method is defined).

The method for date-time objects uses all.equal .numeric to compare times (in "POSIXct"
representation) with a default tolerance of 0.001 seconds, ignoring scale. A time zone mis-
match between target and current is reported unless check.tzone = FALSE.

attr.all.equal isused for comparing attributes, returning NULL or a character vec-
tor.

Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the
differences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal (pi, 355/113)
not precise enough (default tol) > relative error

quarts <- 1/4 + 1:10 # exact
d45 <- pi*quarts ; one <- rep(l, 10)
tan(d45) == one # mostly FALSE, as typically exact; embarrassingly,
tanpi (quarts) == one # (is always FALSE (Fedora 34; gcc 11.2.1))
stopifnot (all.equal (

tan(d45), one)) # TRUE, but not if we are picky:

all.equal (tan(d45), one, tolerance = 0) # to see difference
all.equal (tan(d45), one, tolerance = 0, scale = 1)# "absolute diff.."
all.equal (tan(d45), one, tolerance = 0, scale = 1+(-2:2)/1e9) # "absolute"

all.equal 17

all.equal (tan(d45), one, tolerance = 0, scale = 1+(-2:2)/1e6) # "scaled"

advanced: equality of environments
ae <- all.equal (as.environment ("package:stats"),
asNamespace ("stats"))
stopifnot (is.character (ae), length(ae) > 10,
were incorrectly "considered equal" in R <= 3.1.1
all.equal (asNamespace ("stats"), asNamespace ("stats")))

A situation where 'countEQ = TRUE' makes sense:

x1l <— x2 <- (1:100)/10; =x2[2] <- 1.1%xx1([2]

99 out of 100 pairs (x1[i], x2[i]) are equal:

plot (x1,x2, main = "all.equal.numeric () —-- not counting equal parts")
all.equal (x1,x2) ## "Mean relative difference: 0.1"

mtext (paste ("all.equal (x1,x2) :", all.equal(xl,x2)), line= -2)

##' extract the 'Mean relative difference' as number:

all.egNum <- function(...) as.numeric(sub(".x:", '', all.equal(...)))
set.seed (17)

When x2 is Jjittered, typically all pairs (x1[1],x2[1]) do differ:
summary (r <- replicate (100, all.egNum(xl, x2x(l+rnorm(xl)=xle-=7))))

mtext (paste ("mean (all.equal (x1, x2x(1 + eps_k))) {100 x} Mean rel.diff.=",
signif (mean(r), 3)), line = -4, adj=0)

With argument countEQ=TRUE, get "the same" (w/o need for jittering):

mtext (paste ("all.equal (x1,x2, countEQ=TRUE) :",

signif(all.egNum(x1l,x2, countEQ=TRUE), 3)), line= -6, col=2)

Using giveErr=TRUE

x1l. <= x1 * (1+ le-9xrnorm(x1l))
str(all.equal(xl, x1., giveErr=TRUE))
logi TRUE

- attr(x, "err")= num 8.66e-10

— attr(x, "what")= chr "relative"

Used with stopifnot (), still *showingx diff:
all.equalShow <- function (...) {

r <- all.equal(..., giveErr=TRUE)

cat (attr(r, "what"), "err:", attr(r,"err"), "\n")

c(r) # can drop attributes, as not used anymore
}

checks, showing error in any case:

stopifnot (all.equalShow(xl, x1.)) # —-> relative err: 8.66002e-10
tryCatch (error=identity, stopifnot(all.equalShow(xl, 2%x1))) —-> ele
stopifnot (inherits (eAe, "error"))

stopifnot(all.equal....()) giving smart msg:

cat (conditionMessage (eRAe), "\n")

two <- structure(2, foo = 1, class = "bar")
all.equal (two”20, 2720) # lots of diff

all.equal (two”20, 2720, check.attributes
all.equal (two”20, 2720, check.attributes

FALSE) # "target is bar, current is numeric"
FALSE, check.class = FALSE) # TRUE

comparison of date-time objects

now <- Sys.time ()

stopifnot (

all.equal (now, now + le-4) # TRUE (default tolerance = 0.001 seconds)
)

all.equal (now, now + 0.2)

18 all.names

all.equal (now, as.POSIX1lt (now, "UTC"))

stopifnot (

all.equal (now, as.POSIX1lt (now, "UTC"), check.tzone = FALSE) # TRUE
)

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names (expr, functions = TRUE, max.names = —-1L, unique = FALSE)
all.vars (expr, functions = FALSE, max.names = —-1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returned. —1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names (expression (sin (x+y)))
all.names (quote (sin(x+y))) # or a call
all.vars (expression(sin(x+y)))

any 19

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any (..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . .. should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectorsin . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur

if na.rm=FALSE and . . . contains no TRUE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all, the ‘complement’ of any.

20 aperm

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(any(x < 0)) cat("x contains negative values\n")
aperm Array Transposition
Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)

Default S3 method:

aperm(a, perm = NULL, resize = TRUE, ...)
S3 method for class 'table'

aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)
Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,

where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the
dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).

keep.class logical indicating if the result should be of the same class as a.

potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham. ac.uk> did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

append 21

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
X <- array(l:24, 2:4)
xt <- aperm(x, c(2,1,3))

stopifnot (t(xt[,,2]) == x[,,2],
t(Xt[113]) == X[IIBJI
t(xtl,,4]1) == x[,,4])

UCB <- aperm(UCBAdmissions, c(2,1,3))
UCBI[1,,]
summary (UCB) # UCB is still a contingency table

append Vector Merging

Description

Add elements to a vector.

Usage

append (x, values, after = length(x))

Arguments

X the vector the values are to be appended to.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append (1:5, 0:1, after = 3)

22 apply

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or

matrix.
Usage
apply (X, MARGIN, FUN, ..., simplify = TRUE)
Arguments
X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. E.g., for
a matrix 1 indicates rows, 2 indicates columns, ¢ (1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.
FUN the function to be applied: see ‘Details’. In the case of functions like +, $+%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.
simplify a logical indicating whether results should be simplified if possible.
Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as .matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g., a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

Arguments in ... cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to MARGIN or FUN. In general-purpose code it is good practice
to name the first three arguments if . .. is passed through: this both avoids partial matching to
MARGIN or FUN and ensures that a sensible error message is given if arguments named X, MARGIN
or FUN are passed through

Value

If each call to FUN returns a vector of length n, and simplify is TRUE, then apply returns an
array of dimension c (n, dim(X) [MARGIN]) if n > 1. If n equals 1, apply returns a vector
if MARGIN has length 1 and an array of dimension dim (X) [MARGIN] otherwise. If n is 0, the
result has length O but not necessarily the ‘correct” dimension.

If the calls to FUN return vectors of different lengths, or if simplify is FALSE, apply returns a
list of length prod (dim (X) [MARGIN]) with dim set to MARGIN if this has length greater than
one.

In all cases the result is coerced by as . vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

apply 23

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array; tapply, and convenience functions sweep and
aggregate.

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind (cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot (apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

keeping named dimnames
names (dimnames (x)) <- c("row", "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames (x), list(C = pastelO("cop.",1:3))))
identical (x, apply (%, 2, identity))
identical (x3, apply(x3, 2:3, identity))

##- function with extra args:
cave <- function(x, cl, c2) c(mean(x[cl]), mean(x[c2]))
apply(x, 1, cave, cl = "x1", c2 = c("x1","x2"))

ma <- matrix(c(l:4, 1, 6:8), nrow = 2)

ma

apply (ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile) # 5 x n matrix with rownames

stopifnot (dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(l:24, dim = 2:4)

zseq <- apply(z, 1:2, function(x) seg_len (max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

dim(zseq) ## 2 3

zseql[l,]

apply(z, 3, function(x) seg_len(max(x)))

a list without a dim attribute

24 args

args Argument List of a Function

Description
Displays the argument names and corresponding default values of a (non-primitive or primitive)
function.

Usage

args (name)

Arguments
name a function (a primitive or a closure, i.e., “non-primitive”). If name is a character
string then the function with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive (function), a closure with the documented usage and NULL body. Note that some
primitives do not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help; str also prints the argument list of a function.

Examples

"regular" (non-primitive) functions "print their arguments"

(by returning another function with NULL body which you also see):
args (1ls)

args (graphics::plot.default)

utils::str(ls) # (just "prints": does not show a NULL)

You can also pass a string naming a function.

args ("scan")

...but :: package specification doesn't work in this case.
tryCatch (args ("graphics::plot.default"), error = print)

As explained above, args() gives a function with empty body:

Arithmetic 25

list(is.f = is.function(args(scan)), body = body(args(scan)))

Primitive functions mostly behave like non-primitive functions.
args(c)

args ("+7)

primitive functions without well-defined argument list return NULL:
args (Tif")

Arithmetic Arithmetic Operators

Description

These unary and binary operators perform arithmetic on numeric or complex vectors (or objects
which can be coerced to them).

Usage

|
+ X X

>N % |
KK KKK

XXX X X X X
o\
~

o° oo
S~

o\
g

Arguments

X, ¥ numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

Details

The unary and binary arithmetic operators are generic functions: methods can be written for them
individually or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1 ~yandy ” 0are 1, always. x ~ y should also give the proper limit result when either (numeric)
argument is infinite (one of Inf or —Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For double arguments, $% can be subject to catastrophic loss of accuracy if x is much larger than
v, and a warning is given if this is detected.

[e3ge)

%% and x $/% y can be used for non-integer v, e.g. 1 $/% 0.2, but the results are subject to
representation error and so may be platform-dependent. Mathematically, the answerto 1 $/% 0.2
should be 5, but because the IEC 60559 representation of 0. 2 is a binary fraction slightly larger
than 0 . 2 most platforms give 4.

26

Arithmetic

Users are sometimes surprised by the value returned, for example why (-8) ~ (1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ~ operator. The relevant standards define the result in many corner cases. In
particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

Unary + and unary - return a numeric or complex vector. All attributes (including class) are pre-
served if there is no coercion: logical x is coerced to integer and names, dims and dimnames are
preserved.

The binary operators return vectors containing the result of the element by element operations.
If involving a zero-length vector the result has length zero. Otherwise, the elements of shorter
vectors are recycled as necessary (with a warning when they are recycled only fractionally).
The operators are + for addition, — for subtraction, * for multiplication, / for division and ~ for
exponentiation.

%% indicates x mod y (“x modulo y”), i.e., computes the ‘remainder’ r <- x $% vy, and %/%
indicates integer division, where R uses “floored” integer division, ie., g<-x%/%$vy :=
floor (x/y), as promoted by Donald Knuth, see the Wikipedia page on ‘Modulo operation’,

and hence sign (r) == sign (y). It is guaranteed that
x==(x%%y) +y* (x%/%y) (uptorounding error)

unless y == 0 where the result of $% is NA_integer_ or NaN (depending on the t ypeof of the
arguments) or for some non-finite arguments, e.g., when the RHS of the identity above amounts to
Inf - Inf.

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and * is numeric and for the other operators it is integer (with overflow, which occurs at :I:(231 —1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are taken
from the longer argument. Names will be copied from the first if it is the same length as the answer,
otherwise from the second if that is. If the arguments are the same length, attributes will be copied
from both, with those of the first argument taking precedence when the same attribute is present
in both arguments. For time series, these operations are allowed only if the series are compatible,
when the class and t sp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2) (with e2 missing for a unary operator).

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal aka subnormal numbers (those outside

Arithmetic 27

the range given by .Machine) may differ between platforms and even between calculations on a
single platform.

Another potential issue is signed zeroes: on IEC 60559 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘-0 .0’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be seen
is in division by zero: 1/x is Inf or —Inf depending on the sign of zero x. Another place is
identical (0, -0, num.eqg=FALSE).

Note

All logical operations involving a zero-length vector have a zero-length result.

The binary operators are sometimes called as functions as e.g. &~ (x, y): see the description of
how argument-matching is done in Ops.

* * is translated in the parser to ~, but this was undocumented for many years. It appears as an index
entry in Becker et al. (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in
2008.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi:10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg__
goldberg.html.

For the IEC 60559 (aka IEEE 754) standard: https://www.1iso.org/standard/57469.
html and https://en.wikipedia.org/wiki/IEEE_754.

On the integer division and remainder (modulo) computations, $% and %/%: https://en.
wikipedia.org/wiki/Modulo_operation, and Donald Knuth (1972) The Art of Com-
puter Programming, Vol.1.

See Also

sqrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

%% for matrix multiplication.

Examples
x <- =-1:12
x + 1
2 * X + 3
X %% 3 # is periodic 2 0 1 20 1
x %% -3 # (ditto) -1 0 -2 -1 0 -2
X %/% 5
x %% Inf # now is defined by limit (gave NaN in earlier versions of R)

Illustrating PR#18677, see above
1 %/% print (0.2, digits=19)

https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Modulo_operation
https://en.wikipedia.org/wiki/Modulo_operation

28 array

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array (x)

Arguments
data a vector (including a list or expression vector) giving data to fill the array.
Non-atomic classed objects are coerced by as.vector.
dim the dim attribute for the array to be created, that is an integer vector of length
one or more giving the maximal indices in each dimension.
dimnames either NULL or the names for the dimensions. This must be a list (or it will be
ignored) with one component for each dimension, either NULL or a character
vector of the length given by dim for that dimension. The list can be named,
and the list names will be used as names for the dimensions. If the list is shorter
than the number of dimensions, it is extended by NULLs to the length required.
x an R object.
additional arguments to be passed to or from methods.
Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with
additional attributes giving the dimensions (attribute "dim") and optionally names for those di-
mensions (attribute "dimnames™").

A two-dimensional array is the same thing as a matrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames" attribute is optional: if present it is a list with one component for each dimen-
sion, either NULL or a character vector of the length given by the element of the "dim" attribute
for that dimension.

is.array is a primitive function.

For a list array, the print method prints entries of length not one in the form ‘integer, 7’
indicating the type and length.

array2DF 29

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

Unlike matrix, array does not currently remove any attributes left by as.vector from a
classed list data, so can return a list array with a class attribute.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim [names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., hasa dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm,matrix, dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

(11 [,21 (,31 [,4]
#11,] 1 3 2 1
#02,] 2 1 3 2
array2DF Convert array to data frame
Description

array2DF converts an array, including list arrays commonly returned by tapply, into data
frames for use in further analysis or plotting functions.

Usage

array2DF (x, responseName = "Value",
sep = "", base = 1list (LETTERS),
simplify = TRUE, allowLong = TRUE)

30

array2DF

Arguments

X an array object.

responseName character string, used for creating column name(s) in the result, if required.

sep character string, used as separator when creating new names, if required.

base character vector, giving an initial set of names to create dimnames of x, if miss-
ing.

simplify logical, whether to attempt simplification of the result.

allowLong logical, specifying whether a long format data frame should be returned if x is

a list array and all elements of x are unnamed atomic vectors. Ignored unless
simplify = TRUE.

Details

The main use of array2DF is to convert an array, as typically returned by tapply, into a data
frame.

When simplify = FALSE, this is similar to as.data.frame.table, except that it works
for list arrays as well as atomic arrays. Specifically, the resulting data frame has one row for
each element of the array, with one column for each dimension of the array giving the correspond-
ing dimnames. The contents of the array are placed in a column whose name is given by the
responseName argument. The mode of this column is the same as that of x, usually an atomic
vector or a list.

If x does not have dimnames, they are automatically created using base and sep.
In the default case, when simplify = TRUE, some common cases are handled specially.

If all components of x are data frames with identical column names (with possibly different numbers
of rows), they are rbind-ed to form the response. The additional columns giving dimnames are
repeated according to the number of rows, and responseName is ignored in this case.

If all components of x are unnamed atomic vectors and allowLong = TRUE, each component is
treated as a single-column data frame with column name given by responseName, and processed
as above.

In all other cases, an attempt to simplify is made by simplify2array. If this results in multiple
unnamed columns, names are constructed using responseName and sep.

Value

A data frame with at least length (dim(x)) + 1 columns. The first length (dim(x))
columns each represent one dimension of x and gives the corresponding values of dimnames,
which are implicitly created if necessary. The remaining columns contain the contents of x, after
attempted simplification if requested.

See Also

tapply,as.data.frame.table, split, aggregate.

Examples

sl <- with (ToothGrowth,
tapply(len, list (dose, supp), mean, simplify = TRUE))

s2 <- with (ToothGrowth,
tapply (len, list (dose, supp), mean, simplify = FALSE))

array2DF 31

str(sl) # atomic array
str(s2) # list array

str(array2DF (sl, simplify FALSE)) # Value column is vector
str (array2DF (s2, simplify = FALSE)) # Value column is list
str (array2DF (s2, simplify TRUE)) # simplified to vector

The remaining examples use the default 'simplify = TRUE'
List array with list components: columns are lists (no simplification)

with (ToothGrowth,
tapply (len, list (dose, supp),
function(x) t.test(x) [c("p.value", "alternative")])) |>
array2DF () |> str()

List array with data frame components: columns are atomic (simplified)

with (ToothGrowth,
tapply(len, list (dose, supp),
function(x) with(t.test (x), data.frame(p.value, alternative)))) [>
array2DF () |> str()

named vectors

with (ToothGrowth,
tapply(len, list (dose, supp),
quantile)) |> array2DF ()

unnamed vectors: long format

with (ToothGrowth,
tapply(len, list (dose, supp),
sample, size = 5)) |> array2DF ()

unnamed vectors: wide format

with (ToothGrowth,
tapply(len, list (dose, supp),
sample, size = 5)) |> array2DF (allowLong = FALSE)

unnamed vectors of unequal length

with (ToothGrowth[-1, 1,
tapply (len, list (dose, supp),
sample, replace = TRUE)) [>
array2DF (allowLong = FALSE)

unnamed vectors of unequal length with allowLong = TRUE
(within-group bootstrap)

with (ToothGrowth[-1,],
tapply (len, list(dose, supp), sample, replace = TRUE)) |[>
array2DF () |> str()

data frame input

32 as.data.frame

tapply (ToothGrowth, ~ dose + supp, FUN = with,
data.frame(n = length(len), mean = mean(len), sd = sd(len))) |[|>
array2DF ()
as.data.frame Coerce to a Data Frame
Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame (x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'character'
as.data.frame(x, ...,
stringsAsFactors = FALSE)

S3 method for class 'list'
as.data.frame (x, row.names = NULL, optional FALSE, ...,
cut.names = FALSE, col.names = names(x), fix.empty.names
new.names = !missing(col.names),
check.names = !optional,
stringsAsFactors = FALSE)

S3 method for class 'matrix'

as.data.frame (x, row.names = NULL, optional = FALSE,
make.names = TRUE, ...,
stringsAsFactors = FALSE)

as.data.frame.vector (x, row.names = NULL, optional = FALSE, ...,
nm = deparsel (substitute(x)))

is.data.frame (x)

Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syn-

tactic names: see make.names) is optional. Note that all of R’s base pack-
age as.data.frame () methods use optional only for column names
treatment, basically with the meaning of data.frame (x, check.names =
loptional). See also the make.names argument of the mat rix method

additional arguments to be passed to or from methods.
stringsAsFactors
logical: should the character vector be converted to a factor?

as.data.frame 33

cut .names logical or integer; indicating if column names with more than 256 (or
cut .names if that is numeric) characters should be shortened (and the last
6 characters replaced by " ... ").

col.names (optional) character vector of column names.

fix.empty.names
logical indicating if empty column names, i.e., "" should be fixed up (in
data.frame) or not.

new.names logical indicating that col.names should be used (and possibly reset to NA)
explicitly.

check.names logical; passed to the data. frame () call.

make.names a logical, i.e., one of FALSE, NA, TRUE, indicating what should happen
if the row names (of the matrix x) are invalid. If they are invalid, the default,
TRUE, calls make .names (x, unique=TRUE) ; make.names=NA will use
“automatic” row names and a FALSE value will signal an error for invalid row
names.

nm a character string to be used as column name.

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods. For classes that act as vectors, often a copy of as.data.frame.vector will
work as the method.

Since R 4.3.0, the default method will call as.data.frame.vector for atomic (as by
is.atomic) x.

Direct calls of as.data.frame.class are still possible (base package!), for 12 atomic base
classes, but are deprecated where calling as .data. frame.vector instead is recommended.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data. frame: two examples are matrices of class "model .matrix" (which
are included as a single column) and list objects of class "POSIX1t" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names.
Names are removed from vector columns unless I.

Value

as.data. frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

34 as.Date

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame and make.names; as.data.frame.table forthe t able method (which has
additional arguments).

Examples

LO <- 1ist (LETTERS[1:7], c(4L, 2:3, 5:7, 1L))
L <= LO; names (L) <- nms <- c("nam", "age")
d0 <- as.data.frame (L0, col.names = nms)

(dl <- as.data.frame (L))

stopifnot (identical (d0, dl))

showing possibilities on how NA names are handled:
L <- list (A = 1:4); names (L) <- NA

names (dL. <- as.data.frame (L)) # "NA."
names (dL1l <- as.data.frame (L, col.names = names(L))) # "NA."
#4#

names (dL1.<- as.data.frame (L, check.names=FALSE)) # "NA"
##

names (dL2 <- as.data.frame (L, col.names = names (L), check.names=FALSE)) # NA
names (dLn <- as.data.frame (L, new.names = TRUE, check.names=FALSE)) # NA

as.Date Date Conversion Functions to and from Character
Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

Usage

as.Date(x, ...)

S3 method for class 'character'

as.Date (x, format, tryFormats = c("%$Y-%m-%d", "%Y/%m/%d"),
optional = FALSE, ...)

S3 method for class 'numeric'

as.Date(x, origin, ...)

S3 method for class 'POSIXct'

as.Date(x, tz = "UTC", ...)

S3 method for class 'Date'
format (x, format = "$Y-%m-%d", ...)

S3 method for class 'Date'
as.character(x, ...)

as.Date 35

Arguments
X an object to be converted.
format a character string. If not specified when converting from a character rep-

resentation, it will try tryFormats one by one on the first non-NA element,
and give an error if none works. Otherwise, the processing is via st rptime ()
whose help page describes available conversion specifications.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.
origin a Date object, or something which can be coerced by as.Date (origin,
.. .) tosuch an object or missing. In that case, "1970-01-01" is used.
tz a time zone name.

further arguments to be passed from or to other methods.

Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIX1t" and "POSIXct". (The last is converted to days by ignoring the time after midnight
in the representation of the time in specified time zone, default UTC.) Also objects of class "date"
(from package date) and "dates" (from package chron). Character strings are processed as far
as necessary for the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), since R 4.3.0 also when
origin is not supplied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_character_.

The as .Date methods return an object of class "Date".

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

* Is the origin day O or day 1? As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

* If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

36 as.Date

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements
and interchange formats — Information interchange — Representation of dates and times. For links
to versions available on-line see (at the time of writing) https://www.gsl.net/glsmd/
isopdf.htm.

See Also

Date for details of the date class; 1ocales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.
Windows users will find no help page for st rpt ime: code based on ‘glibc’ is used (with cor-
rections), so all the format specifiers described here are supported, but with no alternative number
representation nor era available in any locale.

Examples

locale-specific version of the date
format (Sys.Date (), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) 1in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c("1janl960", "2janl960", "31lmarl960", "30jull960")

z <— as.Date(x, "%d%b%Y")

Sys.setlocale("LC_TIME", lct)

Z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date (dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date (32768, origin = "1900-01-01")

Excel is said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
incorrectly treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date (35981, origin = "1899-12-30") # 1998-07-05

and Mac Excel

as.Date (34519, origin = "1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

https://www.qsl.net/g1smd/isopdf.htm
https://www.qsl.net/g1smd/isopdf.htm

as.environment 37

Experiment shows that Matlab's origin is 719529 days before ours,

(it takes the non-existent 0000-01-01 as day 1)

so Matlab day 734373 can be imported as

as.Date (734373) - 719529 # 2010-08-23

(value from

http://www.mathworks.de/de/help/matlab/matlab_prog/represent-date-and-times—-in-MATLAB.

Time zone effect

z <- ISOdate (2010, 04, 13, c(0,12)) # midnight and midday UTC
as.Date(z) # in UTC

these time zone names are common

as.Date(z, tz = "NzZ")
as.Date(z, tz = "HST") # Hawaii
as.environment Coerce to an Environment Object
Description

A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

Usage

as.environment (x)

Arguments
X an R object to convert. If it is already an environment, just return it. If it is
a positive number, return the environment corresponding to that position on the
search list. If itis —1, the environment it is called from. If it is a character string,
match the string to the names on the search list.
If it is a list, the equivalent of 1ist2env (x, parent = emptyenv ()) is
returned.
If is.object(x) is true and it has a class for which an
as.environment method is found, that is used.
Details
This is a primitive generic function: you can write methods to handle specific classes of objects, see
InternalMethods.
Value

The corresponding environment object.

Author(s)
John Chambers

See Also

environment for creation and manipulation, search; 1ist2env.

38 as.function

Examples

as.environment (1) ## the global environment
identical (globalenv (), as.environment (1)) ## is TRUE
try(## <<- stats need not be attached
as.environment ("package:stats"))
ee <- as.environment (list(a = "A", b = pi, ch = letters[1:8]))
ls(ee) # names of objects in ee
utils::1ls.str (ee)

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
X object to convert, a list for the default method.

additional arguments to be passed to or from methods.

envir environment in which the function should be defined.

Value

The desired function.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples
as.function(alist(a = , b = 2, a+b))
as.function(alist(a = , b = 2, a+b)) (3)

as.POSIX*

39

as.POSIXx*

Date-time Conversion Functions

Description

Functions to manipulate
dates and times.

objects of classes "POSIX1t" and "POSIXct" representing calendar

Usage
as.POSIXct(x, tz ="", ...)
as.POSIX1lt(x, tz = "", ...)
S3 method for class 'character'
as.POSIX1lt(x, tz = "", format,
tryFormats = c("%$Y-%m—-%d %$H:%M:%0S",
"$Y/%m/%d $H:%M:%0S",
"$Y-%m-%d $H:%M",
"$Y/%m/%d $H:%M",
"$Y-%m—-%d",
"$Y/%Sm/%d"),
optional = FALSE, ...)
Default S3 method:
as.POSIX1lt(x, tz = "",
optional = FALSE, ...)
S3 method for class 'numeric'
as.POSIX1lt(x, tz = "", origin, ...)
S3 method for class 'Date'
as.POSIXct (x, tz = "UTC", ...)
S3 method for class 'Date'
as.POSIX1t (x, tz "uTc", ...)
S3 method for class 'numeric'
as.POSIXct(x, tz = "", origin, ...)
S3 method for class 'POSIX1t'
as.double (x,)
Arguments
R object to be converted.
tz a character string. The time zone specification to be used for the conversion,
if one is required. System-specific (see time zones), but "" is the current time
zone, and "GMT" is UTC (Universal Time, Coordinated). Invalid values are
most commonly treated as UTC, on some platforms with a warning.
further arguments to be passed to or from other methods.
format character string giving a date-time format as used by st rptime.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format

guessing does not succeed.

40 as.POSIX*

origin a date-time object, or something which can be coerced by as.POSIXct (tz
= "GMT") to such an object. Optional since R 4.3.0, where the equivalent of
"1970-01-01" is used.

Details

The as . POSIX« functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert objects of the other class and of
class "Date™" to these classes. Dates without times are treated as being at midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors: if it is not specified and no standard format works for all non-NA inputs an
error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and
you may need to set the LC_TIME category appropriately via Sys . setlocale. This most often
affects the use of $a, $A (weekday names), $b, $B (month names) and $p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIX1t" by strptime: numeric input is first con-
verted to "POSIXct". Any conversion that needs to go between the two date-time classes requires
a time zone: conversion from "POSIX1t" to "POSIXct" will validate times in the selected time
zone. One issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct (strptime("2011-03-27 01:30:00",
as.POSIXct (strptime("2010-10-31 01:30:00",

"%
"%

o0 o

d
d

o oe
o° o
o o

H:$M:%85"))
H:3M:%5"))

o° o

Y-%m—
Y-Sm—
are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one
should expect the first to be NA, but the second could be interpreted as either BST or GMT (and
common OSes give both possible values). Note too (see strftime) that OS facilities may not

format invalid times correctly.

Value

as.POSIXct and as.POSIX1t return an object of the appropriate class, see POSIXt and its
‘Warnings’ section on too narrow assumptions.

If t z was specified, as . POSIX1t will give an appropriate "t zone" attribute. Date-times known
to be invalid will be returned as NA.

Note

Some of the concepts used have to be extended backwards in time (the usage is said to be ‘prolep-
tic’). For example, the origin of time for the "POSIXct" class, ‘1970-01-01 00:00.00 UTC’, is
before UTC was defined. More importantly, conversion is done assuming the Gregorian calendar
which was introduced in 1582 and not used near-universally until the 20th century. One of the re-
interpretations assumed by ISO 8601:2004 is that there was a year zero, even though current year
numbering (and zero) is a much later concept (525 CE for year numbers from 1 CE).

Conversions between "POSIX1t" and "POSIXct" of future times are speculative except in UTC.
The main uncertainty is in the use of and transitions to/from DST (most systems will assume the
continuation of current rules but these can be changed at short notice).

as.POSIX* 41

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIX1t" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use the format method.

If a time zone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

Conversion from character needs to find a suitable format unless one is supplied (by trying common
formats in turn): this can be slow for long inputs.

See Also

DateTimeClasses for details of the classes; st rpt ime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples

(z <= Sys.time())

unclass (z)

floor (unclass (z)/86400)

(now <- as.POSIX1lt (Sys.time())
str (unclass (now))

now$year + 1900

months (now) ; weekdays (now)

the current datetime, as class "POSIXct"

a large integer

the number of days since 1970-01-01 (UTC)
the current datetime, as class "POSIX1t"
the internal list ; use nowS$Shour, etc

see ?DateTimeClasses

see ?months; using LC_TIME locale

H oW HE — H H

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)

z <— 1472562988

ways to convert this

as.POSIXct(z, origin = "1960-01-01") # local
as.POSIXct(z, origin = "1960-01-01", tz = "GMT") # in UTC

SPSS dates (R-help 2006-02-16)
z <- c(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct(z, origin = "1582-10-14", tz = "GMTI"))

Stata date-times: milliseconds since 1960-01-01 00:00:00 GMT
format %tc excludes leap-seconds, assumed here

For format %tC including leap seconds, see foreign::read.dta()
z <- 1579598122120

op <- options(digits.secs = 3)
avoid rounding down: milliseconds are not exactly representable
as.POSIXct ((z+0.1) /1000, origin = "1960-01-01")

options (op)

Matlab 'serial day number' (days and fractional days)
z <= 7.343736909722223e5 # 2010-08-23 16:35:00
as.POSIXct ((z — 719529) 86400, origin = "1970-01-01", tz = "UTC")

as.POSIX1lt (Sys.time (), "GMT") # the current time in UTC

These may not be correct names on your system

as.POSIX1lt (Sys.time (), "America/New_York") # in New York
as.POSIX1lt (Sys.time (), "ESTSEDT") # alternative.
as.POSIX1lt (Sys.time (), "EST") # somewhere in Eastern Canada

42 Asls

as.POSIX1t (Sys.time (), "HST") # in Hawaii
as.POSIX1lt (Sys.time (), "Australia/Darwin")

tab <- file.path(R.home ("share"), "zoneinfo", "zonel970.tab")

if(file.exists(tab)) { # typically on Windows; on Linux when “configure —--with-internal-
cols <= c("code", "coordinates", "Tz", "comments")
tmp <- read.delim(tab,

header = FALSE, comment.char = "#", col.names = cols)
if (interactive()) View (tmp)
head (tmp, 10)
}
AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

I(x)

Arguments

x an object

Details

Function I has two main uses.

* In function data.frame. Protecting an object by enclosing it in I () in a call to
data.frame inhibits the conversion of character vectors to factors (only relevant if
stringsAsFactors = TRUE) and the dropping of names, and ensures that matrices are
inserted as single columns. I can also be used to protect objects which are to be added to a
data frame, or converted to a data frame via as .data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a
few of its own methods, including for [, as.data.frame, print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",
" "« and "~" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms . formula.

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

asplit

See Also

data.frame, formula

43

asplit Split Array/Matrix By Its Margins

Description

Split an array or matrix by its margins.

Usage

asplit (x, MARGIN, drop = FALSE)

Arguments

X an array, including a matrix.

MARGIN a vector giving the margins to split by. E.g., for a matrix 1 indicates rows, 2
indicates columns, c (1, 2) indicates rows and columns. Where x has named
dimnames, it can be a character vector selecting dimension names.

drop a logical indicating whether the splits should drop dimensions and dimnames.

Details

Since R 4.1.0, one can also obtain the splits (less efficiently) using apply (x, MARGIN,
identity, simplify = FALSE). The values of the splits can also be obtained (less efficiently)

by split (x, slice.index (x, MARGIN)).

Value

A “list array” with dimension dv and each element an array of dimension de and dimnames pre-
served as available if drop is false and a vector otherwise, where dv and de are, respectively, the

dimensions of x included and not included in MARGIN.

Examples

A 3-dimensional array of dimension 2 x 3 x 4:

d<-2 : 4
x <- array(seqg_len(prod(d)), d)
X

Splitting by margin 2 gives a 1-d list array of length 3

consisting of 2 x 4 arrays:
asplit (x, 2)

Splitting by margins 1 and 2 gives a 2 x 3 list array

consisting of 1-d arrays of length 4:
asplit (x, c(1, 2))

Compare to

split(x, slice.index(x, c (1, 2)))

A 2 x 3 matrix:
(x <= matrix(1 : 6, 2, 3))
To split x by its rows, one can use

44 assign

asplit(x, 1)

or less efficiently
split(x, slice.index(x, 1))
split(x, row(x))

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment (pos),
inherits = FALSE, immediate = TRUE)
Arguments
x a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?
immediate an ignored compatibility feature.
Details

There are no restrictions on the name given as x: it can be a non-syntactic name (see
make.names).

The pos argument can specify the environment in which to assign the object in any of several ways:
as —1 (the default), as a positive integer (the position in the search list); as the character string
name of an element in the search list; or as an environment (including using sys. frame to
access the currently active function calls). The envir argument is an alternative way to specify an
environment, but is primarily for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

assignOps 45

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see 1lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked (when an error is
signaled).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-, get, the inverse of assign (), exists, environment.

Examples

for(i in 1:6) { #-—- Create objects 'r.1', 'r.2', ... 'r.6' ——
nam <- paste("r", i, sep = ".")
assign(nam, 1:i)

}

ls (pattern = ""r..s")
##-— Global assignment within a function:
myf <- function (x) {
innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)

innerf (x+1)
t
myf (3)
Global.res # 16

a <- 1:4
assign("af[l]l", 2)
a[l] == 2 # FALSE
get ("a[l]") == 2 # TRUE
assignOps Assignment Operators
Description

Assign a value to a name.

46

assignOps

Usage

x <- value
x <<- wvalue
value —-> x
value ->> x

x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <- and = assign into the environment in which they are evaluated. The operator
<- can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<- and —>> are normally only used in functions, and cause a search to be made
through parent environments for an existing definition of the variable being assigned. If such a
variable is found (and its binding is not locked) then its value is redefined, otherwise assignment
takes place in the global environment. Note that their semantics differ from that in the S language,
but are useful in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual
for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <— = <<- group right to left, the other from left to right.

Value

value. Thus one can use a <— b <— c <— 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

assign (and its inverse get), for “subassignment” such as x[1] <- v, see [<—; further,
environment.

attach 47

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage
attach (what, pos = 2L, name = deparsel (substitute (what), backtick=FALSE),
warn.conflicts = TRUE)
Arguments
what ‘database’. This can be a data.frame ora list or a R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search () where to attach.
name name to use for the attached database. Names starting with package: are

reserved for 1ibrary.

warn.conflicts
logical. If TRUE, message () s are printed about conflicts from attaching
the database, unless that database contains an object .conflicts.OK. A con-
flict is a function masking a function, or a non-function masking a non-function.
NB: Even though the name is warn.conflicts for historical reasons, the
messages about conflicts are nof warning () s but message () s.

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g., in the example
below, height rather than womenS$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
sys.source.

Names starting "package: " are reserved for 1 ibrary and should not be used by end users. At-
tached files are by default given the name f£ile: what. The name argument given for the attached
environment will be used by search and can be used as the argument to as .environment.

48 attach

Value

The environment is returned invisibly with a "name" attribute.

Good practice

attach has the side effect of altering the search path and this can easily lead to the wrong object
of a particular name being found. People do often forget to det ach databases.

In interactive use, with is usually preferable to the use of attach/detach, unless what is a
save () -produced file in which case attach () is a (safety) wrapper for 1oad ().

In programming, functions should not change the search path unless that is their purpose. Often
with can be used within a function. If not, good practice is to

* Always use a distinctive name argument, and

» To immediately follow the at tach call by an on.exit call to detach using the distinctive
name.

This ensures that the search path is left unchanged even if the function is interrupted or if code after
the at tach call changes the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

Examples

require (utils)

summary (women$height) # refers to variable 'height' in the data frame
attach (women)
summary (height) # The same variable now available by name

height <- height=*2.54 # Don't do this. It creates a new variable
in the user's workspace
find("height")

summary (height) # The new variable in the workspace
rm (height)
summary (height) # The original variable.

height <<- height*25.4 # Change the copy in the attached environment
find("height")

summary (height) # The changed copy
detach ("women")
summary (womenS$Sheight) # unchanged

Not run: ## create an environment on the search path and populate it
sys.source ("myfuns.R", envir = attach (NULL, name = "myfuns"))

End (Not run)

attr 49

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- wvalue

Arguments
X an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?
value an object, the new value of the attribute, or NULL to remove the attribute.
Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given), unless
the object is NULL, a symbol (aka ‘name’) or a primitive function.

The extraction function first looks for an exact match to which amongst the attributes of x, then
(unless exact = TRUE) a unique partial match. (Setting opt ions (warnPartialMatchAttr
= TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and tsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the levels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

NULL objects cannot have attributes and attempting to assign one by at t r gives an error.

Both are primitive functions.

Value
For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

50 attributes

Examples

create a 2 by 5 matrix
x <-= 1:10
attr (x,"dim") <- c(2, 5)

S <— sum
attr (S, "foo") <- NA # gives a warning, will become an error!
attributes (sum) <- NULL # revert to sanity

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes (x)
attributes (x) <- wvalue
mostattributes (x) <- value

Arguments
X any R object; for the replacement functions, not a symbol (aka ‘name’) nor a
primitive function.
value an appropriate named 11ist of attributes, or NULL.
Details

Unlike attr it is currently not an error to set attributes on a NULL object: it will first be coerced
to an empty 1ist.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the 1evels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vec-
tor, i.e, the order of the elements of attributes () does not matter. This is also reflected
by identical () ’s behaviour with the default argument attrib.as.set = TRUE. Attributes
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when known to be valid whereas an attributes assignment
would give an error if any are not. It is principally intended for arrays, and should be used with care
on classed objects. For example, it does not check that row . names are assigned correctly for data
frames.

autoload 51

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

NULL objects cannot have attributes and attempts to assign them will promote the object to an empty
list.

Both assignment and replacement forms of att ributes are primitive functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr, structure.

Examples

x <- cbind(a = 1:3, pi = pi) # simple matrix with dimnames
attributes (x)

strip an object's attributes:
attributes (x) <- NULL
x # now just a vector of length 6

mostattributes (x) <- list (mycomment = "really special", dim = 3:2,
dimnames = 1list (LETTERS[1:3], letters[l:5]), names = paste(l:6))
X # dim(), but not {dim}names
autoload On-demand Loading of Packages
Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if package was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload (name, package, reset = FALSE, ...)
autoloader (name, package, ...)

.AutoloadEnv
.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.

other arguments to 1ibrary.

52

Value

backsolve

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

Examples

require (stats)

autoload("interpSpline", "splines")

search ()

1s ("Autoloads")

.Autoloaded

x <— sort(stats::rnorm(1l2))

y <= x"2

is <- interpSpline(x, V)
search () ## now has splines
detach ("package:splines")

search ()

is2 <- interpSpline(x, y+x)
search () ## and again
detach ("package:splines")

backsolve

Solve an Upper or Lower Triangular System

Description

Solves a triangular system of linear equations.

Usage

backsolve(r, x, k = ncol(r), upper.tri

TRUE,
transpose = FALSE)

forwardsolve(l, x, k = ncol(l), upper.tri = FALSE,

Arguments

r,1l

X
k

upper.tri

transpose

transpose = FALSE)

an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.

a matrix whose columns give the right-hand sides for the equations.
the number of columns of r and rows of x to use.

logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.

logical; if TRUE, solve 7’ x y = x for y, i.e., t (r) $*% y == x.

balancePOSIXIt 53

Details

Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower
(‘left’, ‘L") triangular.

x <— backsolve (R, b) solves Rx = b, and
x <— forwardsolve (L, b) solves Lx = b, respectively.

The r/1 must have at least k rows and columns, and x must have at least k rows.

This is a wrapper for the level-3 BLAS routine dt rsm.

Value
The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.
See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 31
r $+x% y # == x = (8,4,2)

backsolve (r, x, transpose = TRUE) # 8 -12 -5

balancePOSIX1t Balancing “Ragged” and Out-of-range POSIXIt Date-Times

Description

Utilities to ‘balance’ objects of class "POSIX1t".

unCfil1POSIX1t (x) is a fast primitive version of balancePOSIX1t (x,
fill.only=TRUE, classed=FALSE) or equivalently, unclass (balancePOSIX1lt (x,
fill.only=TRUE)) from where it is named.

Usage

balancePOSIX1t (x, fill.only = FALSE, classed = TRUE)
unCfillPOSIX1t (x)

54

balancePOSIXIt

Arguments

X an R object inheriting from "POSIX1t", see POSIX1t.

fill.only a logical specifying if balancePOSIX1t (x, ..) should only “fill up”
by recycling, but not re-check validity nor recompute, e.g., xSwday and
x$yday.

classed a logical specifying if the result should be classed, true by default. Using
balancePOSIX1lt (x, classed = FALSE) is equivalent to but faster than
unclass (balancePOSIX1t (x)).

“Ragged” and Out-of-range vs “Balanced” POSIXIt

Note that "POSIX1t" objects x may have their (9 to 11) list components of different 1engths,
by simply recycling them to full length. Prior to R 4.3.0, this has worked in printing, formatting,
and conversion to "POSIXct", but often not for length (), conversion to "Date" or indexing,
i.e., subsetting, [, or subassigning, [<-.

Relatedly, components sec, min, hour, mday and mon could have been out of their designated
range (say, 0-23 for hours) and still work correctly, e.g. in conversions and printing. This is
supported as well, since R 4.3.0, at least when the values are not extreme.

Function balancePOSIX1t (x) will now return a version of the "POSIX1t " object x which by
default is balanced in both ways: All the internal list components are of full length, and their values
are inside their ranges as specified in as .POSIX1t’s ‘Details on POSIXIt’. Setting fill.only
= TRUE will only recycle the list components to full length, but not check them at all. This is
particularly faster when all components of x are already of full length.

Experimentally, balancePOSIX1t () and other functions returning POSIX1t objects now set a
logical attribute "balanced" with NA meaning “filled-in”, i.e., not “ragged” and TRUE means
(fully) balanced.

See Also

For more details about many aspects of valid POSIX1t objects, notably their internal list compo-
nents, see ‘DateTimeClasses’, e.g., as.POSIX1t, notably the section ‘Details on POSIXIt’.

Examples

FIXME: this should also work for regular (non-UTC) time zones.
TZ <=-"UTC"

Could be

dl <- as.POSIX1t ("2000-01-02 3:45", tz = TZ)

on systems (almost all) which have tm_zone.

0ldTZ <- Sys.getenv ('TZ', unset = "unset")

Sys.setenv (TZ = "UTC")

dl <- as.POSIX1t ("2000-01-02 3:45")

dlSmin <- dlSmin + (0:16)*20L

(fl1 <- format (dl))

str (unclass (dl)) # only Smin is of length > 1
df <- balancePOSIX1lt(dl, fill.only = TRUE) # a "POSIX1t" object
str (unclass (df)) # all of length 17; 'min' unchanged

db <- balancePOSIX1lt (dl, classed = FALSE) # a list
stopifnot (identical (

unCfil1POSIX1t (dl),

balancePOSIX1lt (dl, fill.only = TRUE, classed = FALSE)))
str(db) # of length 17 xand* in range

basename 55

if (01ldTZ == "unset") Sys.unsetenv('TZ') else Sys.setenv(TZ = 01dTZ)
basename Manipulate File Paths
Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or " . " if there
is no path separator.

Usage
basename (path)
dirname (path)

Arguments

path character vector, containing path names.

Details

tilde expansion of the path will be performed.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

Paths not containing any separators are taken to be in the current directory, so dirname returns

" . ll.
If an element of path is NA, so is the result.

" " is not a valid pathname, but is returned unchanged.

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but dirname will return a path
using / (except if on a network share, when the leading \ \ will be preserved). Expect these only to
be able to handle complete paths, and not for example just a network share or a drive.

UTF-8-encoded path names not valid in the current locale can be used.

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path " /" and of returning " . " for empty strings.

See Also

file.path, path.expand.

56 Bessel

Examples

basename (file.path ("", "pl", "p2", "p3", c("filel", "file2")))
dirname (file.path("","pl","p2","p3", "filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

Usage

bessell
besselK
besseld
besselY

FALSE)
FALSE)

X, nu, expon.scaled
X, nu, expon.scaled
X, nu)
X, nu)

Arguments

X numeric, > 0.

nu numeric; the order (maybe fractional and negative) of the corresponding Bessel
function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.

Details

If expon.scaled = TRUE, e ?],(z), or e* K, (x) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

The current algorithms will give warnings about accuracy loss for large arguments. In some cases,
these warnings are exaggerated, and the precision is perfect. For large nu, say in the order of
millions, the current algorithms are rarely useful.

Value

Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel
function.

The length of the result is the maximum of the lengths of the parameters. All parameters are recycled
to that length.
Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaptation to R: Martin Maechler <maechler@stat.math.ethz.ch>.

Bessel 57

Source

The C code is a translation of Fortran routines from https://netlib.org/specfun/
ribesl, ‘. ./rjbesl’, etc. The four source code files for bessel[IJKY] each contain a para-
graph “Acknowledgement” and “References”, a short summary of which is

besselI based on (code by) David J. Sookne, see Sookne (1973). .. Modifications. .. An earlier
version was published in Cody (1983).

besseld asbessell

besselK based on (code by) J. B. Campbell (1980). .. Modifications. ..

besselY draws heavily on Temme’s Algol program for Y...and on Campbell’s programs for
Yo(x)....... heavily modified.

References
Abramowitz, M. and Stegun, 1. A. (1972). Handbook of Mathematical Functions. Dover, New
York; Chapter 9: Bessel Functions of Integer Order.
In order of “Source” citation above:

Sookne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of Re-
search of the National Bureau of Standards, T7TB, 125-132. doi:10.6028/jres.077B.012.

Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind.
ACM Transactions on Mathematical Software, 9(2), 242-245. doi:10.1145/357456.357462.

Campbell, J.B. (1980). On Temme’s algorithm for the modified Bessel function of the third kind.
ACM Transactions on Mathematical Software, 6(4), 581-586. doi:10.1145/355921.355928.

Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
Computer Physics Communications, 18, 133-142. doi:10.1016/00104655(79)900304.

Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the second
kind. Journal of Computational Physics, 21, 343-350. doi:10.1016/00219991(76)900322.
See Also

Other special mathematical functions, such as I'(z) and B(a, b).

Examples

require (graphics)
nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)
plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)
legend (0, 6, legend = paste("nu=", nus), col = nus + 2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <= c(-.5, 1)

plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
abline (h=0, v=0, lty=3)
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)

legend ("topright", legend = paste("nu=", nus), col = nus + 2, lwd = 1, bty="n")

Negative nu's ———————————————————————— -

https://netlib.org/specfun/ribesl
https://netlib.org/specfun/ribesl
https://doi.org/10.6028/jres.077B.012
https://doi.org/10.1145/357456.357462
https://doi.org/10.1145/355921.355928
https://doi.org/10.1016/0010-4655%2879%2990030-4
https://doi.org/10.1016/0021-9991%2876%2990032-2

Bessel

Xx <— 2:7
nu <- seqg(-10, 9, length.out = 2001)

—— I() —— ——— ——— ———
matplot (nu, t (outer (xx, nu, bessell)), type = "1", ylim = c(-50, 200),
main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,

", as ", f(nu))),

xlab = expression (nu))
abline(v = 0, col = "light gray", lty = 3)
legend (5, 200, legend = paste("x=", xx), col=seq(xx), lty=1:5)

— J() — — ——— ———
bJ <- t(outer(xx, nu, besselld))
matplot (nu, bJ, type = "1", ylim = c(-500, 200),
xlab = quote(nu), ylab = quote(J[nu] (x)),
main = expression (paste("Bessel ", J[nu] (x), " for fixed ", x)))
abline(v = 0, col = "light gray", 1lty = 3)

legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)

ZOOM into right part:

matplot (nu[nu > -2], bJd[nu > -2,]1, type = "1",

xlab = quote(nu), ylab = quote(J[nu] (x)),

main = expression(paste("Bessel ", J[nu] (x), " for fixed ", x)))
abline (h=0, v = 0, col = "gray60", lty = 3)

legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)

- X ——> 0 =
x0 <- 2”seqg(-16, 5, length.out=256)
plot (range (x0), c(le-40, 1), log = "xy", xlab = "x", ylab = "", type = "n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale") ; axis(2, at=1)
for(nu in sort (c(nus, nus+0.5)))

lines (x0, besselJ(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%sl > 0))
legend("right", legend = paste("nu=", paste(nus, nus+0.5, sep=", ")),

col = nus + 2, lwd = 1, bty="n")

x0 <= 2”seg(-10, 8, length.out=256)

plot (range (x0), 107c(-100, 80), log = "xy", xlab = "x", ylab = "", type = "n",

main = "Bessel Functions K_nu(x) near 0\n log - log scale") ; axis(2, at=1)
for(nu in sort (c(nus, nus+0.5)))

lines (x0, besselK(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))
legend ("topright", legend = paste("nu=", paste(nus, nus + 0.5, sep =", ")),

col = nus + 2, 1lwd = 1, bty="n")

x <= x[x > 0]

plot(x, x, ylim = c(le-18, lell), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)"); axis (2, at=1)

for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)

legend (0, le-5, legend=paste("nu=", nus), col = nus + 2, lwd = 1)

yl <= c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y_nu(x)")
for(nu in nus) {
xx <— X[xX > .6*xnu]
lines (xx, besselY (xx, nu=nu), col = nu+2)
}

legend (25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

bindenv 59

negative nu in bessel_Y -- was bogus for a long time

curve (besselY (x, -0.1), 0, 10, ylim = c(-3,1), ylab ="")

for(nu in c(seq(-0.2, -2, by = -0.1)))

curve (besselY (x, nu), add = TRUE)
title (expression (besselY (x, nu) * " "o
{nu == 1list(-0.1, -0.2, ..., =2)1}))
bindenv Binding and Environment Locking, Active Bindings
Description

These functions represent an interface for adjustments to environments and bindings within envi-
ronments. They allow for locking environments as well as individual bindings, and for linking a
variable to a function.

Usage

lockEnvironment (env, bindings = FALSE)
environmentIsLocked (env)
lockBinding(sym, env)
unlockBinding (sym, env)
bindingIsLocked (sym, env)

makeActiveBinding (sym, fun, env)
bindingIsActive (sym, env)
activeBindingFunction (sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string.
fun a function taking zero or one arguments.
Details

The function lockEnvironment locks its environment argument. Locking the environment pre-
vents adding or removing variable bindings from the environment. Changing the value of a variable
is still possible unless the binding has been locked. The namespace environments of packages with
namespaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installs fun in environment env so that getting the value of sym calls
fun with no arguments, and assigning to sym calls fun with one argument, the value to be as-
signed. This allows the implementation of things like C variables linked to R variables and variables
linked to databases, and is used to implement setRefClass. It may also be useful for making
thread-safe versions of some system globals. Currently active bindings are not preserved during
package installation, but they can be created in . onLoad.

60 bitwise

Value
The bindingIsLocked and environmentIsLocked return a length-one logical vector. The
remaining functions return NULL, invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <— new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockEnvironment (e)

get ("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <— new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockBinding ("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding ("x", e)

assign("x", 2, envir = e)

get ("x", envir = e)

active bindings
f <—= local ({
x <=1
function (v) {
if (missing(v))
cat ("get\n")
else {
cat ("set\n")
X <<— v

1)

makeActiveBinding ("fred", £, .GlobalEnv)
bindingIsActive ("fred", .GlobalEnv)

fred

fred <- 2

fred

bitwise Bitwise Logical Operations

Description

Logical operations on integer vectors with elements viewed as sets of bits.

bitwise 61

Usage

bitwNot (a)
bitwAnd (a, b)
bitwOr (a, b)
bitwXor (a, b)

bitwShiftL(a, n)
bitwShiftR(a, n)

Arguments
a,b integer vectors; numeric vectors are coerced to integer vectors.
n non-negative integer vector of values up to 31.

Details

Each element of an integer vector has 32 bits.
Pairwise operations can result in integer NA.

Shifting is done assuming the values represent unsigned integers.

Value

An integer vector of length the longer of the arguments, or zero length if one is zero-length.

The output element is NA if an input is NA (after coercion) or an invalid shift.

See Also

The logical operators, !, &, |, xor. Notably these do work bitwise for raw arguments.

The classes "octmode™ and "hexmode" whose implementation of the standard logical operators
is based on these functions.

Package bitops has similar functions for numeric vectors which differ in the way they treat integers
231 or larger.

Examples
bitwNot (0:12) # -1 -2 ... —13
bitwAnd (15L, 7L) # 7
bitwOr (15L, 7L) # 15
bitwXor (15L, 7L) # 8
bitwXor (=1L, 1L) # -2

The "same" for 'raw' instead of integer
rrl2 <- as.raw(0:12) ; rbind(rrl2, !rrl2)
c(rl5 <- as.raw(l5), r7 <- as.raw(7)) # O0f 07
rl5 & r7 # 07

rl5 | r7 # 0f

xor (rl5, r7)# 08

bitwShiftR (-1, 1:31) # shifts of 2732-1 = 4294967295

https://CRAN.R-project.org/package=bitops

62 body

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function which is basically all of the function definition but its formal
arguments (formals), see the ‘Details’.

Usage

body (fun = sys.function(sys.parent()))

body (fun, envir = environment (fun)) <- value
Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.

Value

body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be a symbol such as pi or a constant (e.g., 3 or "R") to be the return
value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (poten-
tially) resets the environment of the function, and drops attributes. If value is of class
"expression™" the first element is used as the body: any additional elements are ignored, with a
warning.

See Also

The three parts of a (non-primitive) function are its formals, body, and environment.

Further, see alist, args, function.

Examples

body (body)

f <- function(x) x"5

body (f) <- quote (5"x)

or equivalently body(f) <- expression (5"x)
£(3) # = 125

body (f)

creating a multi-expression body

bquote 63

e <- expression(y <- x"2, return(y)) # or a list
body (f) <- as.call(c(as.name("{"), e))

f

£(8)

Using substitute() may be simpler than 'as.call(c(as.name ("{",..)))"':
stopifnot (identical (body (f), substitute({ y <- x"2; return(y) })))

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment. If splice = TRUE then terms wrapped
in .. () are evaluated and spliced into a call.

Usage

bquote (expr, where = parent.frame (), splice = FALSE)

Arguments

expr A language object.

where An environment.

splice Logical; if TRUE splicing is enabled.
Value

A language object.

See Also

quote, substitute

Examples

require (graphics)

a <- 2

bquote (a == a)

quote (a == a)

bquote(a == . (a))

substitute(a == A, list(A = a))

plot(1:10, ax(1:10), main = bqgquote(a == . (a)))

to set a function default arg
default <- 1
bguote (function(x, y = . (default)) x+y)

exprs <- expression(x <- 1, y <= 2, x + V)
bquote (function() {.. (exprs)}, splice = TRUE)

64

browser

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage
browser (text = "", condition = NULL, expr = TRUE, skipCalls = 0L)
Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr a “condition”. By default, and whenever not false after being coerced to
logical, the debugger will be invoked, otherwise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g., external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr is not FALSE after coercion to logical. In most cases it is going
to be more efficient to use an if statement in the calling program, but in some cases using this
argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another
debugging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

c exit the browser and continue execution at the next statement.
cont synonym for c.

f finish execution of the current loop or function.

help print this list of commands.

n evaluate the next statement, stepping over function calls. For byte compiled functions interrupted
by browser calls, n is equivalent to c.

s evaluate the next statement, stepping into function calls. Again, byte compiled functions make s
equivalent to c.

where print a stack trace of all active function calls.

browser 65

r invoke a "resume" restart if one is available; interpreted as an R expression otherwise. Typi-
cally "resume" restarts are established for continuing from user interrupts.

Q exit the browser and the current evaluation and return to the top-level prompt.

Leading and trailing whitespace is ignored, except for an empty line. Handling of empty lines
depends on the "browserNLdisabled" option; if it is TRUE, empty lines are ignored. If not,
an empty line is the same as n (or s, if it was used most recently).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly, or use autoprint via (n).

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines).

The browser prompt is of the form Browse [n] >: here n indicates the ‘browser level’. The browser
can be called when browsing (and often is when debug is in use), and each recursive call increases
the number. (The actual number is the number of ‘contexts’ on the context stack: this is usually 2
for the outer level of browsing and 1 when examining dumps in debugger.)

This is a primitive function but does argument matching in the standard way.

Interaction with Condition Handling

Because the browser prompt is implemented using the restart and condition handling mechanism, it
prevents error handlers set up before the breakpoint from being called or invoked. The implemen-
tation follows this model:

repeat withRestarts(
withCallingHandlers (
readEvalPrint (),
error = function(cnd) {
cat ("Error:", conditionMessage (cnd), "\n")
invokeRestart ("browser")

)y
browser = function(...) NULL

readEvalPrint <- function(env = parent.frame()) {
print (eval (parse (prompt = "Browse[n]> "), env))

The restart invocation interrupts the lookup for condition handlers and transfers control to the next
iteration of the debugger REPL.

Note that condition handlers for other classes (such as "warning") are still called and may cause
a non-local transfer of control out of the debugger.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

66

Se

browserText

e Also

debug, and t raceback for the stack on error. browserText for how to retrieve the text and
condition.

browserText Functions to Retrieve Values Supplied by Calls to the Browser

Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText (n = 1)
browserCondition(n = 1)
browserSetDebug(n = 1)

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText
and browserCondition provide ways to retrieve those values. Since there can be multiple
browser contexts active at any time we also support retrieving values from the different contexts.
The innermost (most recently initiated) browser context is numbered 1: other contexts are numbered
sequentially.

browserSetDebug provides a mechanism for initiating the browser in one of the calling
functions. See sys.frame for a more complete discussion of the calling stack. To use
browserSetDebug you select some calling function, determine how far back it is in the call
stack and call browserSetDebug with n set to that value. Then, by typing c at the browser
prompt you will cause evaluation to continue, and provided there are no intervening calls to browser
or other interrupts, control will halt again once evaluation has returned to the closure specified. This
is similar to the up functionality in GDB or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondit ion returns the condition from the spec-
ified browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

builtins 67

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins (internal = FALSE)

Arguments
internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.
Details

builtins () returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use 1s (baseenv (), all.names =

TRUE).
builtins (TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as . Internal (foo (args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by (data, INDICES, FUN, ..., simplify = TRUE)

68 by
Arguments

data an R object, normally a data frame, possibly a matrix.

INDICES a factor or a list of factors, each of length nrow (data). For the data frame
method, INDICES can also be a formula as in the £ argument of the split
method for data frames.

FUN a function to be applied to (usually data-frame) subsets of data.
further arguments to FUN.

simplify logical: see tapply

Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and

function FUN is applied to each subset in turn.

For the default method, an object with dimensions (e.g., a matrix) is coerced to a data frame and

the data frame method applied. Other objects are also coerced to a data frame, but FUN is applied

separately to (subsets of) each column of the data frame.

Value
An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

See Also
tapply, simplify2array. array2DF to convert result to a data frame. ave also applies a
function block-wise.

Examples

require (stats)
by (warpbreaks[, 1:2], warpbreaks[,"tension"], summary)

by (warpbreaks[, 117, warpbreaks([, -1], summary)
by (warpbreaks, warpbreaks|, "tension"],
function(x) 1lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmpl <- with (warpbreaks,
by (warpbreaks, tension,
function(x) 1lm(breaks ~ wool, data = x)))
sapply (tmpl, coef)

another way
tmp2 <- by (warpbreaks, ~ tension,

with, coef (lm(breaks ~ wool)))
array2DF (tmp2, simplify = TRUE)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage

S3 Generic function

c(...)
Default S3 method:

c(..., recursive = FALSE, use.names = TRUE)

Arguments

objects to be concatenated. All NULL entries are dropped before method dis-
patch unless at the very beginning of the argument list.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.
use.names logical indicating if names should be preserved.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < double < complex < character < list < expression. Pairlists are treated
as lists, whereas non-vector components (such as names / symbols and calls) are treated as
one-element 11ists which cannot be unlisted even if recursive = TRUE.

If the output type is complex, logical, integer, and double NAs keep their imaginary parts zero
when coerced, and hence will not become NA_complex_ (with imaginary part NA).

There is a ¢ . fact or method which combines factors into a factor.

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note
that ¢ methods other than the default are not required to remove attributes (and they will almost
certainly preserve a class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ...).

70

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(l, 7:9)
c(l:5, 10.5, "next")

uses with a single argument to drop attributes
x <—= 1:4
names (x) <- letters([1:4]

X
c(x) # has names
as.vector(x) # no names
dim(x) <- c(2,2)

X

c(x)

as.vector (x)

append to a list:
11 <= list(A =1, c = "C")
do *not* use

c(ll, d = 1:3) # which is == c (11, as.list(c(d = 1:3)))

but rather
c(ll, d = 1list(1:3)) # c() combining two lists

descend through lists:
c(list(A = ¢c(B = 1)), recursive = TRUE)
c(list(A = c(B =1, C =2), B=c(E = 7)), recursive

= TRUE)

call

Wadsworth &

call Function Calls

Description

Create or test for objects of mode "call™" (or " (", see Details).

Usage

call (name, ...)
is.call (x)
as.call (x)

Arguments

name a non-empty character string naming the function to be called.

arguments to be part of the call.
x an arbitrary R object.

call

Details

71

call returns an unevaluated function call, that is, an unevaluated expression which consists of the

is.

named function applied to the given arguments (name must be a string which gives the name
of a function to be called). Note that although the call is unevaluated, the arguments . . . are
evaluated.

call is a primitive, so the first argument is taken as name and the remaining arguments as
arguments for the constructed call: if the first argument is named the name must partially
match name.

call isused to determine whether x is a call (i.e., of mode "call" or " ("). Note that

e is.call (x) is strictly equivalent to typeof (x) == "language".

e is.language () is also true for calls (but also for symbols and expressions
where is.call () is false).

e When is.call (cl) istrue, class (cl) typically returns "call", except when c1
isone of if, for, while, (, {, <—, =, which each has its own class (cl) (equal to
the “function” name), see the ‘Special calls’ example.

as.call (x): Objects of mode "1ist" can be coerced to mode "call". The first element of

the list becomes the function part of the call, so should be a function or the name of one (as a
symbol; a character string will not do).

If you think of using as.call (string), consider using str2lang (string) which is an
efficient version of parse (text=string). Note that call () and as.call (), when ap-
plicable, are much preferable to these parse () based approaches.

All three are primitive functions.

as.call is generic: you can write methods to handle specific classes of objects, see InternalMeth-

ods.

Warning

call should not be used to attempt to evade restrictions on the use of . Internal and other
non-API calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-
tions; further is.language, expression, function.

Producing calls etc from character: str2lang and parse.

Examples

is.

##
cl
is
cl

call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
<- call ("round", 10.5)
call(cl) # TRUE

identical (quote (round (10.5)), # <- less functional, but the same

cl) # TRUE

72 callCC
such a call can also be evaluated.
eval (cl) # [1] 10
class(cl) # "call"
typeof (cl) # "language"
is.call(cl) && is.language(cl) # always TRUE for "call"s
A <- 10.5
call ("round", A) # round(10.5)
call ("round", quote(A)) # round(A)
f <- "round"
call (f, quote (A)) # round (A)
1f we want to supply a function we need to use as.call or similar
f <- round
Not run: call(f, quote(Ad)) # error: first arg must be character
(g <—= as.call(list(f, quote(A))))
eval (g)
alternatively but less transparently
g <- list(f, quote(A))
mode (g) <- "call"
g
eval (g)
Special calls (and some regular ones):
L <- as.list(E <- setNames(, c("if", "for", "while", "repeat", "function",
ll(ll, ll{ll, Il[ll, ll<7ll, ll<<7ll, |l7>I|, ll=ll)))
for (i in seqg_along (L)) L[[i]] <- call(E[[i]]) # instead of lapply(E, call)
list_ <- function (...) “names<-"(list(...), vapply(sys.call()[-1L], as.character,
(Tab <- noquote (sapply (list_(is.call, typeof, class, mode), \(F) sapply(L, F))))
The 7 exceptions:
Tab[Tab|[,"class"] != "call" , c(3:4, 1:2)]
see also the examples in the help for do.call
callcc Call With Current Continuation
Description
A downward-only version of Scheme’s call with current continuation.
Usage
callCC (fun)
Arguments
fun function of one argument, the exit procedure.
Details

callcCcC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callccC immediately returns, with the value supplied to the exit function as the value returned by
callcCcC.

"'l))

CallExternal 73

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC (function(k) 1)

callCC (function (k) k(1))

callCC (function (k) {k(1); 2})

callCC (function (k) repeat k(1))

CallExternal Modern Interfaces to C/C++ code

Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage
.Call(.NAME, ..., PACKAGE)
.External (.NAME, ..., PACKAGE)
Arguments
. NAME a character string giving the name of a C function, or an object
of class "NativeSymbolInfo", "RegisteredNativeSymbol" or
"NativeSymbol" referring to such a name.
arguments to be passed to the compiled code. Up to 65 for .Call.
PACKAGE if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, *.d11’,...).
This argument follows . . . and so its name cannot be abbreviated.
This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).
Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used for C++ code.

For details about how to write code to use with these functions see the chapter on ‘System and
foreign language interfaces’ in the ‘Writing R Extensions’ manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable or unlimited number of
arguments.

These functions are primitive, and . NAME is always matched to the first argument supplied (which
should not be named). For clarity, avoid using names in the arguments passed to . . . that match or
partially match . NAME.

74 capabilities

Value

An R object constructed in the compiled code.

Header files for external code

Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h’ and/or the macros in ‘Rdefines.h’.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass . NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

PACKAGE = "" used to be accepted (but was undocumented): it is now an error.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load, .C, .Fortran.

The ‘Writing R Extensions’ manual.

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities (what = NULL,

Xchk = any(nas %in% c("X11", "Jjpeg", "png", "tiff")))
Arguments
what character vector or NULL, specifying required components. NULL implies that
all are required.
Xchk logical with a smart default, indicating if X11-related capabilities should

be fully checked, notably on macOS. If set to false, may avoid a warning “No
protocol specified” and e.g., the "X11" capability may be returned as NA.

capabilities

Value

75

A named logical vector. Current components are

jpeg
png
tiff
tcltk

X11

aqua

http/ftp

sockets

libxml

fifo
cledit

iconv

NLS
Rprof

profmem

cairo

ICU

long.double

is the jpeg function operational?
is the png function operational?
is the t 1 £ £ function operational?

is the teltk package operational? Note that to make use of Tk you will almost
always need to check that "X11" is also available.

are the X1 1 graphics device and the X11-based data editor available? This loads
the X11 module if not already loaded, and checks that the default display can be
contacted unless a X11 device has already been used.

is the quartz function operational? Only on some macOS builds, including
CRAN binary distributions of R.

Note that this is distinct from .Platform$SGUI == "AQUA", which is true
only when using the Mac R. app GUI console.

does the default method for url and download. file support ‘http://’
and ‘ftp://’ URLs? Always TRUE as from R 3.3.0. However, in recent ver-
sions the default method is "1ibcurl" which depends on an external library
and it is conceivable that library might not support ‘ftp://’ in future.

are make.socket and related functions available? Always TRUE as from R
3.3.0.

is there support for integrating 1ibxm1 with the R event loop? TRUE as from
R 3.3.0, FALSE as from R 4.2.0.

are FIFO connections supported?

is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘-—no-readline’ was not used when R
was invoked. (If ‘——interactive’ was used, command-line editing will not
actually be available.)

is internationalization conversion via i conv supported? Always true in current

R.
is there Natural Language Support (for message translations)?

is there support for Rprof () profiling? This is true if R was configured (before
compilation) with default settings which include ——enable-R-profiling.

is there support for memory profiling? See t racememn.

is there support for the svg, cairo_pdf and cairo_ps devices, and for
type = "cairo" inthe bmp, jpeg, png and t i f £ devices? Priorto R4.1.0
this also indicated Cairo support in the X11 device, but it is now possible to
build R with Cairo support for the bitmap devices without support for the X11
device (usually when that is not supported at all).

is ICU available for collation? See the help on Comparison and
icuSetCollate: itis never used for a C locale.

does this build use a C long double type which is longer than double?
Some platforms do not have such a type, and on others its use can be suppressed
by the configure option ‘--disable-long-double’.

Although not guaranteed, it is a reasonable assumption that if present long dou-
bles will have at least as much range and accuracy as the ISO/IEC 60559 80-bit
‘extended precision’ format. Since R 4.0.0 .Machine gives information on the
long-double type (if present).

76 cat

libcurl is 1ibcurl available in this build? Used by function cur1GetHeaders and
optionally by download.file and url. As from R 3.3.0 always true for
Unix-alikes, and as from R 4.2.0 true on Windows.

Note to macOS users

Capabilities " jpeg", "png" and "tiff" refer to the X11-based versions of these devices. If
capabilities ("aqua") is true, then these devices with type = "quartz" will be avail-
able, and out-of-the-box will be the default type. Thus for example the tiff device will be
available if capabilities ("aqua") || capabilities ("tiff") if the defaults are un-

changed.

See Also

.Platform, extSoftVersion, and grSoftVersion (and links there) for availability of
capabilities external to R but used from R functions.

Examples

capabilities()

if (!capabilities ("ICU"))
warning ("ICU is not available")

Does not call the internal Xll-checking function:
capabilities (Xchk = FALSE)

See also the examples for 'connections'.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat (... , file = "", sep =" ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

R objects (see ‘Details’ for the types of objects allowed).

file a connection, or a character string naming the file to print to. If " " (the default),
cat prints to the standard output connection, the console unless redirected by
sink. Ifitis " | cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

cat 77

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by “"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if £i11 is TRUE, or the value of £111 if this is numeric.
Linefeeds are only inserted between elements, strings wider than £i11 are not
wrapped. Non-positive £111 values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.

append logical. Only used if the argument £ile is the name of file (and not a connec-
tion or " | cmd"). If TRUE output will be appended to £i1le; otherwise, it will
overwrite the contents of file.

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep = string(s) to each
element and then outputs them.

No line feeds (aka “newline”s) are output unless explicitly requested by ‘"\n"’ or if generated by
filling (if argument £111 is TRUE or numeric).

If £ile is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt " mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print .default
which escapes non-printable characters and backslash — use encodeString if you want to
output encoded strings using cat). Other types of R object should be converted (e.g., by
as.character or format) before being passed to cat. That includes factors, which are output
as integer vectors.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather
than separators, an element being output after every vector element and a newline after the last.
Entries are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print, format, and paste which concatenates into a string.

78

Examples

cbind

iter <- stats::rpois(l, lambda = 10)
print an informative message
cat ("iteration = ", iter <- iter 4+ 1, "\n")

'f£ill"

and label lines:

cat (paste(letters, 100% 1:26), fill = TRUE, labels = pasteO("{", 1:10, "}:"))

cbind

Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data-frame arguments and combine by columns or rows, re-
spectively. These are generic functions with methods for other R classes.

Usage

cbind(...
rbind (...

deparse.level = 1)
deparse.level = 1)

S3 method for class 'data.frame'

rbind(...
stringsAsFactors = FALSE, factor.exclude = TRUE)

Arguments

deparse.level = 1, make.row.names = TRUE,

(generalized) vectors or matrices. These can be given as named argu-
ments. Other R objects may be coerced as appropriate, or S4 methods
may be used: see sections ‘Details’ and ‘Value’. (For the "data.frame"
method of cbind these can be further arguments to data.frame such as
stringsAsFactors.)

deparse.level

integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):

deparse.level = 0 constructs no labels;

the default deparse.level =1 typically and deparse.level =2 al-
ways construct labels from the argument names, see the ‘Value’ section below.

make.row.names

(only for data frame method:) logical indicating if unique and valid
row.names should be constructed from the arguments.

stringsAsFactors

logical, passed to as.data.frame; only has an effect when the . .. argu-
ments contain a (non-data.frame) character.

factor.exclude

if the data frames contain factors, the default TRUE ensures that NA levels of
factors are kept, see PR#17562 and the ‘Data frame methods’. In R versions up
to 3.6.x, factor.exclude = NA has been implicitly hardcoded (R <= 3.6.0)
or the default (R =3.6.x, x >=1).

https://bugs.R-project.org/show_bug.cgi?id=17562

cbind 79

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected. If some of the arguments are of an S4 class,
i.e., 1sS4 (.) istrue, S4 methods are sought also, and the hidden cbind / rbind functions from
package methods maybe called, which in turn build on cbind2 or rbind2, respectively. In that
case, deparse. level is obeyed, similarly to the default method.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Matrices are restricted to less than 23! rows and columns even on 64-bit systems. So input vectors
have the same length restriction: as from R 3.2.0 input matrices with more elements (but meeting
the row and column restrictions) are allowed.

Value

For the default method, a matrix combining the . . . arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < double < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame (..., check.names =
FALSE) . This means that it will split matrix columns in data frame arguments.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)

80 cbind

It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the level sets of the factors encountered) and the result is an ordered factor if and only if all the
components were ordered factors. Old-style categories (integer vectors with levels) are promoted
to factors.

Note that for result column j, factor (., exclude =X (j)) is applied, where

X(j) := 1f (isTRUE (factor.exclude)) {
if (INA.lev[]J]) NA # else NULL
} else factor.exclude

where NA . lev [j] is true iff any contributing data frame has had a factor in column j with an
explicit NA level.

Dispatch
The method dispatching is not done via UseMethod (), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘. . . /src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find a method, we use it. Otherwise, if there was an S4 object among the arguments, we
try S4 dispatch; otherwise, we use the default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a
data frame.
Examples
m <- cbind (1, 1:7) # the 'l' (= shorter vector) is recycled
m
m <—- cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m

cbind(1:7, diag(3)) # vector is subset -> warning

cbind (0, rbind(1l, 1:3))

cbind(I = 0, X = rbind(a = 1,
xx <- data.frame (I = rep(0,2))
1, b

cbind(xx, X = rbind(a = = 1:3)) # named differently

b =1:3)) # use some names

’

cbind (0, matrix(l, nrow = 0, ncol = 4)) #> Warning (making sense)
dim(cbind (0, matrix(l, nrow = 2, ncol = 0))) #-> 2 x 1

char.expand 81

deparse.level

dd <- 10

rbind(1:4, ¢ = 2, "a++" = 10, dd, deparse.level = 0) # middle 2 rownames
rbind(1:4, ¢ = 2, "a++" = 10, dd, deparse.level = 1) # 3 rownames (default)
rbind(1:4, ¢ = 2, "a++" = 10, dd, deparse.level = 2) # 4 rownames

cheap row names:

b0 <- gl (3,4, labels=letters[1l:3])

bf <- setNames (b0, pastelO("o", seqg_along(b0)))

df <- data.frame(a =1, B = b0, £ = gl(4,3))

df. <- data.frame(a = 1, B = bf, f gl(4,3))

new <- data.frame(a = 8, B ="B", f = "1")

(dfl <- rbind(df , new))

(df .1 <- rbind(df., new))

stopifnot (identical (dfl, rbind(df, new, make.row.names=FALSE)),
identical (dfl, rbind(df., new, make.row.names=FALSE)))

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand (input, target, nomatch = stop("no match"))
Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value
A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

82

character

Examples

locPars <- c("mean", "median", "mode")
char.expand ("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character (length = 0)
as.character (x,)
is.character (x)

Arguments
length a non-negative integer specifying the desired length. Double values will be co-
erced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

as.character and is.character are generic: you can write methods to handle spe-
cific classes of objects, see InternalMethods. Further, for as.character the default method
calls as.vector, so, only if (is.object (x)) is true, dispatch is first on methods for
as.character and then for methods for as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting IEC
60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equalto "".

as.character attempts to coerce its argument to character type; like as.vector it strips at-
tributes including names. For lists and pairlists (including language objects such as calls) it deparses
the elements individually, except that it extracts the first element of length-one character vectors,
see the Abc example.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

charmatch 83

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options: options scipen and OutDec affect the conversion of numbers.

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and case folding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search (keyword = "character") gives even more links.

deparse, which is normally preferable to as . character for language objects.

Quotes on how to specify character / string constants, including raw ones.

Examples

form <- y ~a + b + c
as.character (form) ## length 3
deparse (form) ## like the input

a0 <— 11/999 # has a repeating decimal representation
(al <- as.character (a0))
format (a0, digits = 16) # shows 1 to 2 more digit (s)
a2 <- as.numeric(al)

a2 - a0 # normally around -le-17
as.character (a2) # possibly different from al
print (c(al0, a2), digits = 16)

as.character (list (A = "Abc", xy = c("x", "y"))) # "Abc" "c(\"x\", \"y\"m)"
i.e., "Abc" directly instead of deparsing to "\"Abc\""

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage
charmatch (x, table, nomatch = NA_integer_)
Arguments
X the values to be matched: converted to a character vector by as .character.
Long vectors are supported.
table the values to be matched against: converted to a character vector. Long vectors

are not supported.
nomatch the (integer) value to be returned at non-matching positions.

84 chartr

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomat ch is returned.

NA values are treated as the string constant "NA".

Value
An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

startsWith for another matching of initial parts of strings; grep or regexpr for more general
(regexp) matching of strings.

Examples
charmatch (""", "") # returns 1
charmatch ("m", c("mean", "median", "mode")) # returns O
charmatch ("med", c("mean", "median", "mode")) # returns 2
chartr Character Translation and Case Folding
Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr (old, new, Xx)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or

more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?

chartr 85

Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If o1d contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged. More than one character can be mapped to a
single upper-case character.

casefold is a wrapper for tolower and toupper originally written for compatibility with
S-PLUS.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding) if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8 or Latin-1, when it will be in UTF-8.

Note

These functions are platform-dependent, usually using OS services. The latter can be quite defi-
cient, for example only covering ASCII characters in 8-bit locales. The definition of ‘alphabetic’ is
platform-dependent and liable to change over time as most platforms are based on the frequently-
updated Unicode tables.

See Also

sub and gsub for other substitutions in strings.

Examples

x <— "MiXeD cAsE 123"
chartr ("iXs", "why", x)
chartr ("a-cX", "D-Fw", Xx)
tolower (x)

toupper (x)

"Mixed Case" Capitalizing - toupper(every first letter of a word)

.simpleCap <- function(x) {

s <— strsplit(x, " ")[[1]]
paste (toupper (substring(s, 1, 1)), substring(s, 2),
sep = "", collapse =" ")

}
.simpleCap ("the quick red fox Jjumps over the lazy brown dog")
—> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function (s, strict = FALSE) {
cap <- function(s) paste (toupper (substring(s, 1, 1)),
{s <- substring(s, 2); if(strict) tolower(s) else s},
sep = "", collapse = " ")
sapply (strsplit (s, split = " "), cap, USE.NAMES = !is.null (names(s)))

86 chkDots

}

capwords (c ("using AIC for model selection"))

—> [1] "Using AIC For Model Selection"

capwords (c ("using AIC", "for MODEL selection"), strict = TRUE)

-> [1] "Using Aic" "For Model Selection"
~an Anann
#4 'bad' 'good'
—— Very simple insecure crypto —-—
rot <- function(ch, k = 13) {
pO0 <- function(...) paste(c(...), collapse = "")

A <- c(letters, LETTERS, " '")
I <- seq_len(k); chartr(p0(A), pO(c(A[-I], A[I])), ch)

pw <— "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ““decrypt''
rot (crypw, 54 - 13) # -> the original:
stopifnot (identical (pw, rot (crypw, 54 - 13)))

chkDots Warn About Extraneous Arguments in the "..." of Its Caller
Description
Warn about extraneous arguments in the . . . of its caller. A utility to be used e.g., in S3 methods
which need a formal . . . argument but do not make any use of it. This helps catching user errors

in calling the function in question (which is the caller of chkDots ()).

Usage

chkDots (..., which.call = -1, allowed = character(0))

Arguments

“the dots”, as passed from the caller.

which.call passed to sys.call (). A caller may use -2 if the message should mention its
caller.

allowed not yet implemented: character vector of named elements in ... which are
“allowed” and hence not warned about.

Author(s)

Martin Maechler, first version outside base, June 2012.

See Also

warning,

chol 87

Examples
seq.default ## <- you will see ' chkDots(...) '
seq(l,5, foo = "bar") # gives warning via chkDots ()
warning with more than one ...-entry:

density.f <- function(x, ...) NextMethod("density")
x <— density(structure(rnorm(10), class="f"), bar=TRUE, baz=TRUE)

chol The Cholesky Decomposition

Description

Compute the Cholesky factorization of a real symmetric positive-definite square matrix.

Usage

chol (x, ...)

Default S3 method:

chol (x, pivot = FALSE, LINPACK = FALSE, tol = -1, ...)
Arguments
X an object for which a method exists. The default method applies to numeric (or

logical) symmetric, positive-definite matrices.

arguments to be passed to or from methods.

pivot logical: should pivoting be used?

LINPACK logical. Defunct and gives an error.

tol a numeric tolerance for use with pivot = TRUE.
Details

chol is generic: the description here applies to the default method.
Note that only the upper triangular part of x is used, so that R’ R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur as a numerical tolerance is used.

If pivot = TRUE, then the Cholesky decomposition of a positive semi-definite x can be computed.
The rank of x is returned as attr (Q, "rank"), subject to numerical errors. The pivot is returned
as attr (Q, "pivot"). Itis no longer the case that t (Q) %$+% Q equals x. However, setting
pivot <—attr(Q, "pivot") and co <- order (pivot),itistruethatt (Q[, co]) %$*%
QI[, oo] equals x, or, alternatively, t (Q) $*% Qequals x [pivot, pivot]. See the examples.

The value of tol is passed to LAPACK, with negative values selecting the default tolerance of
(usually) nrow (x) * .Machine$double.neg.eps x max (diag(x)). The algorithm ter-
minates once the pivot is less than tol.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

88 chol

Value
The upper triangular factor of the Cholesky decomposition, i.e., the matrix R such that R'R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

Source

This is an interface to the LAPACK routines DPOTRF and DPSTREF,
LAPACK is from https://netlib.org/lapack/ and its guide is listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

gr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <= chol(m))

t(cm) %$*x% cm #-— = 'm'
crossprod (cm) #—— = 'm'

now for something positive semi-definite
X <— matrix(c(l:5, (1:5)72), 5, 2)

x <- cbind(x, x[, 1] + 3=*x[, 2])
colnames (x) <— letters[20:22]

m <- crossprod(x)

gr (m) Srank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol () unlike gr() does not use a tolerance.
try (chol (m))

(Q <= chol(m, pivot = TRUE))

we can use this by

pivot <- attr(Q, "pivot")

crossprod(Q[, order (pivot)]) # recover m

https://netlib.org/lapack/
https://netlib.org/lapack/lug/lapack_lug.html

chol2inv 89

now for a non-positive-definite matrix
(m <= matrix(c(5,-5,-5,3), 2, 2))

try (chol (m)) # fails

(Q <= chol(m, pivot = TRUE)) # warning
crossprod (Q) # not equal to m

chol2inv Inverse from Cholesky (or QR) Decomposition

Description
Invert a symmetric, positive definite square matrix from its Cholesky decomposition. Equivalently,
compute (X’'X)~! from the (R part) of the QR decomposition of X.

Usage

chol2inv (x, size = NCOL(x), LINPACK = FALSE)

Arguments
x a matrix. The first size columns of the upper triangle contain the Cholesky
decomposition of the matrix to be inverted.
size the number of columns of x containing the Cholesky decomposition.
LINPACK logical. Defunct and gives an error.
Value

The inverse of the matrix whose Cholesky decomposition was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Source

This is an interface to the LAPACK routine DPOTRI. LAPACK is from https://netlib.
org/lapack/ and its guide is listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
athttps://netlib.org/lapack/lug/lapack_lug.html.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %$*% chol2inv (cma)

https://netlib.org/lapack/
https://netlib.org/lapack/
https://netlib.org/lapack/lug/lapack_lug.html

90 chooseOpsMethod

chooseOpsMethod Choose the Appropriate Method for Ops

Description

chooseOpsMethod is a function called by the Ops Group Generic when two suitable methods
are found for a given call. It determines which method to use for the operation based on the objects
being dispatched.

The function is first called with reverse = FALSE, where x corresponds to the first argument
and y to the second argument of the group generic call. If chooseOpsMethod () returns FALSE
for x, then chooseOpsMethod is called again, with x and y swapped, mx and my swapped, and
reverse = TRUE.

Usage

chooseOpsMethod (x, y, mx, my, cl, reverse)

Arguments
X, Y the objects being dispatched on by the group generic.
mx, my the methods found for objects x and y.
cl the call to the group generic.
reverse logical value indicating whether x and y are reversed from the way they were
supplied to the generic.
Value

This function must return either TRUE or FALSE. A value of TRUE indicates that method mx should
be used.

See Also

Ops

Examples

Create two objects with custom Ops methods

foo_obj <- structure(l, class = "foo")
bar_ob]j <- structure(l, class = "bar")
“+.foo” <- function(el, e2) "foo"
Ops.bar <- function(el, e2) "bar"

invisible (foo_obj + bar_obj) # Warning: Incompatible methods
chooseOpsMethod.bar <- function(x, y, mx, my, cl, reverse) TRUE

stopifnot (exprs = {
identical (foo_obj + bar_obj, "bar")
identical (bar_obj + foo_obj, "bar")
})

class 91

cleanup
rm(foo_obj, bar_obj, “+.foo”, Ops.bar, chooseOpsMethod.bar)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class (x)

class (x) <— value

unclass (x)

inherits(x, what, which = FALSE)
nameOfClass (x)

isa(x, what)

oldClass (x)
oldClass (x) <- value
.class2 (x)

Arguments
x an R object.

what, value a character vector naming classes. value can also be NULL. what can also be
a non-character R object with a nameOfClass () method.

which logical affecting return value: see ‘Details’.

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. (Functions o1dClass and oldClass<- get and set the attribute,
which can also be done directly.)

If the object does not have a class attribute, it has an implicit class, notably "matrix", "array",
"function" or "numeric" or the result of typeof (x) (which is similar to mode (x)), but
for type "language" and mode "call", where the following extra classes exist for the corre-
sponding function calls: if, for,while, (, {, <-, =.

Note that for objects x of an implicit (or an S4) class, when a (S3) generic function foo (x) is
called, method dispatch may use more classes than are returned by class (x), e.g., for a numeric
matrix, the foo.numeric () method may apply. The exact full character vector of the classes
which UseMethod () uses, is available as . class?2 (x) since R version 4.0.0. (This also applies
to S4 objects when S3 dispatch is considered, see below.)

Beware that using .class2 () for other reasons than didactical, diagnostical or for debugging
may rather be a misuse than smart.

92

class

NULL objects (of implicit class "NULL") cannot have attributes (hence no class attribute) and
attempting to assign a class is an error.

When a generic function fun is applied to an object with class attribute c ("first",
"second"), the system searches for a function called fun.first and, if it finds it, applies
it to the object. If no such function is found, a function called fun.second is tried. If no class
name produces a suitable function, the function fun.default is used (if it exists). If there is no
class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspond-
ingly, class<- sets the classes an object inherits from. Assigning an empty character vector or
NULL removes the class attribute, as for o1dClass<- or direct attribute setting. Whereas it is
clearer to explicitly assign NULL to remove the class, using an empty vector is more natural in e.g.,
class (x) <—setdiff(class(x), "ts").

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class (x) matched by the element of what; zero
indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

nameOfClass is an S3 generic. It is called by inherits to get the class name for what,
allowing for what to be values other than a character vector. nameOfClass methods are expected
to return a character vector of length 1.

isa tests whether x is an object of class(es) as given in what by using is if x is an S4 object, and
otherwise giving TRUE iff all elements of class (x) are contained in what.

All but inherits and isa are primitive functions.

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in package methods
which is attached by default. For objects which have a formal class, its name is returned by class
as a character vector of length one and method dispatch can happen on several arguments, instead
of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined
for S4 classes. See the ‘Introduction’ and ‘Methods_for_S3’ help pages for basic information on
S4 methods and for the relation between these and S3 methods.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is. The two functions behave consistently with
one exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is
will test the condition, but inherits ignores all conditional superclasses.

Note

UseMethod dispatches on the class as returned by c1lass (with some interpolated classes: see the
link) rather than o1dClass. However, group generics dispatch on the o1dClass for efficiency,
and internal generics only dispatch on objects for which is.object is true.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

col 93

Examples

x <- 10

class (x) # "numeric"

oldClass (x) # NULL

inherits(x, "a") #FALSE

class (x) <- c("a", "b")

inherits (x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c¢"), TRUE) # 1 2 0

class(quote (pi)) # "name"
regular calls
class(quote (sin (pi*x))) # "call"

special calls

class(quote(x <- 1)) # "<="
class(quote((1 < 2))) # " ("
class(quote(if(8<3) pi)) # "if"
.class2 (pi) # "double" "numeric"
.class2 (matrix(1:6, 2,3)) # "matrix" "array" "integer" "numeric"
col Column Indexes
Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage
col (x, as.factor = FALSE)
.col (dim)
Arguments
X a matrix-like object, that is one with a two-dimensional dim.
dim a matrix dimension, i.e., an integer valued numeric vector of length two (with
non-negative entries).
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

94 Colon
See Also
row to get rows; slice.index for a general way to get slice indices in an array.
Examples
extract an off-diagonal of a matrix
ma <- matrix(l:12, 3, 4)
ma[row(ma) == col(ma) + 1]
create an identity 5-by-5 matrix more slowly than diag(n = 5):
x <- matrix (0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <=1
(134 <= .col(3:4))
stopifnot (identical (i34, .col(c(3,4)))) # 'dim' maybe "double"
Colon Colon Operator
Description
Generate regular sequences.
Usage
from:to
a:b
Arguments
from starting value of sequence.
to (maximal) end value of the sequence.
a,b factors of the same length.
Details
The binary operator : has two meanings: for factors a : b is equivalent to interaction (a, b)
(but the levels are ordered and labelled differently).
For other arguments from: to is equivalent to seq (from, to), and generates a sequence from
fromto to in steps of 1 or —1. Value to will be included if it differs from £rom by an integer up
to a numeric fuzz of about 1e-7. Non-numeric arguments are coerced internally (hence without
dispatching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.
Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued
and the result is representable in the R integer type, otherwise of type "double™ (aka mode

"numeric").

For factors, an unordered factor with levels labelled as 1a: 1b and ordered lexicographically (that

is, 1Db varies fastest).

colSums

References

95

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

(for numeric arguments: S does not have :

See Also

seq (a generalization of from:to).

for factors.)

As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

Examples

1:4
pi:6 # real
6:pi # integer

fl <= gl(2, 3);
f2 <- gl(3, 2);
fl1:f2 # a factor,

fl
f£2
the

"cross"

fl1 x £2

colSums

Form Row and Column Sums and Means

Description

Form (generalized) row and column sums and means for numeric arrays (or data frames).

Usage
colSums (x, na.
rowSums (x, na.
colMeans (x, na.
rowMeans (x, na.
.colSums (x, m,
.rowSums (x, m,
.colMeans (x, m,
.rowMeans (x, m,

Arguments

X

na.rm

dims

rm
rm
rm
rm

= FALSE,
= FALSE,
= FALSE,
= FALSE,

na.
na.
na.
na.

rm =

rm
rm

rm =

dims =
dims =
dims =
dims =

FALSE
FALSE
FALSE
FALSE

- — — —

e
NPENPEPE

an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame. For .colSums () etc, a numeric,
integer or logical matrix (or vector of length m x n).

logical. Should missing values (including NaN) be omitted from the calcula-
tions?

integer number: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum
over. For row, the sum or mean is over dimensions dims+1, ...;forcolx

it is over dimensions 1 :dims.

the dimensions of the matrix x for . colSums () etc.

96 colSums

Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the result will be one of
NaN or N2, but which might be platform-dependent.

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

The versions with an initial dot in the name (. colSums () etc) are ‘bare-bones’ versions for use
in programming: they apply only to numeric (like) matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na . rm =
TRUE), that component of the output is set to O (x Sums) or NaN (xMeans), consistent with sum
and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <= cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums (x)

dimnames (x) [[1]] <- letters[1:8]

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
x[] <- as.integer (x)

rowSums (x); colSums (x)

x[] <- x < 3

rowSums (x); colSums (x)

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums (X, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

dim (UCBAdmissions)
rowSums (UCBAdmissions); rowSums (UCBAdmissions, dims = 2)
colSums (UCBAdmissions); colSums (UCBAdmissions, dims

I
[\

complex case

X <— cbind(xl = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums(x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums (X, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs 97

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘——args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘~—args’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after
‘——args’.

See Also

R.home (), Startup and BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste (commandArgs (), collapse = " "))

98 Comparison

comment Query or Set a "comment " Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment (x) <- wvalue

Arguments

x any R object.

value a character vector, or NULL
See Also

attributes and attr for other attributes.

Examples

x <- matrix(1:12, 3, 4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

XXX X XX
A\VARWAN
([t

KK KK

Comparison 99

Arguments
X,y atomic vectors, symbols, calls, or other objects for which methods have been
written.
Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode code-point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are
translated to UTF-8 before comparison.

Raw vectors should not really be considered to have an order, but the numeric order of the byte
representation is used.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (NA) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls can only be used as operands for == and ! =; the other
comparisons signal an error when one of the operands is a language object. Currently language
objects are deparsed to character strings before comparison. This can be inefficient and may not be
what is really wanted. For equality comparisons identical is usually a better choice.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2).

100 Comparison

Note

Do not use == and ! = for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and ! = do not allow for the finite representation
of fractions, nor for rounding error. Using all.equal with identical or 1sTRUE is almost
always preferable; see the examples. (This also applies to the other comparison operators.)

These operators are sometimes called as functions as e.g. ~<™ (x, y): see the description of how
argument-matching is done in Ops.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see https://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(https://unicode.org/reports/trl0/) is likely to be increasingly influential. Where
available R by default makes use of ICU (https://icu.unicode.org/) for collation (ex-
cept in a C locale).

See Also

Logic on how to combine results of comparisons, i.e., logical vectors.
factor for the behaviour with factor arguments.
Syntax for operator precedence.

capabilities for whether ICU is available, and icuSetCollate to tune the string collation
algorithm when it is.

Examples

x <- stats::rnorm(20)
x < 1
x[x > 0]

x1l <= 0.5 - 0.
x2 <- 0.3 - 0.
x1 == x2 # FALSE on most machines
isTRUE (all.equal (x1, x2)) # TRUE everywhere

3
1

ETS

range of most 8-bit charsets, as well as of Latin-1 in Unicode
<- c(32:126, 160:255)

N

X <— 1f(110n_info () SMBCS) {
intToUtf8(z, multiple = TRUE)
} else rawToChar (as.raw(z), multiple = TRUE)
by number
writelLines (strwrap (paste(x, collapse=" "), width = 60))

by locale collation
writelines (strwrap (paste (sort (x), collapse=" "), width = 60))

https://en.wikipedia.org/wiki/Collating_sequence
https://en.wikipedia.org/wiki/Collating_sequence
https://unicode.org/reports/tr10/
https://icu.unicode.org/

complex 101

complex Complex Numbers and Basic Functionality

Description

Basic functions which support complex arithmetic in R, in addition to the arithmetic operators +,

%, /aand/\~
Usage
complex (length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex (x)

Mod (z)
Arg(z)
Conij(z)
Arguments
length.out numeric. Desired length of the output vector, inputs being recycled as needed.
real numeric vector.
imaginary numeric vector.
modulus numeric vector.
argument numeric vector.
X an object, probably of mode complex.
z an object of mode complex, or one of a class for which a methods has been
defined.
further arguments passed to or from other methods.
Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. Since R version 4.4.0, as.complex (x) for “number-like” x, i.e.,
types "logical", "integer", and "double", will always keep imaginary part zero, now
also for NA’s. Up to R versions 3.2.x, all forms of NA and NaN were coerced to a complex NA,
i.e., the NA_complex_ constant, for which both the real and imaginary parts are NA. Since R
3.3.0, typically only objects which are NA in parts are coerced to complex NA, but others with NaN
parts, are not. As a consequence, complex arithmetic where only NaN’s (but no NA’s) are involved
typically will not give complex NA but complex numbers with real or imaginary parts of NaN. All
of these many different complex numbers fulfill is.na (.) but only one of them is identical to
NA_complex_.

102 complex

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Con j have their usual interpretation as returning the real part,
imaginary part, modulus, argument and complex conjugate for complex values. The modulus and
argument are also called the polar coordinates. If z = x + iy with real « and y, for r = Mod(z) =
Va2 +y?,and ¢ = Arg(z), x = rcos(¢p) and y = rsin(¢). They are all internal generic primitive
functions: methods can be defined for them individually or via the Complex group generic.

In addition to the arithmetic operators (see Arithmetic) +, —, x, /, and *, the elementary trigono-
metric, logarithmic, exponential, square root and hyperbolic functions are implemented for complex
values.

Matrix multiplications ($* %, crossprod, tcrossprod) are also defined for complex matrices
(matrix), and so are solve, eigen or svd.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN (including NA, see NA_complex_ and above) or plus or minus infinity.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.

Note

Operations and functions involving complex NaN mostly rely on the C library’s handling of
‘double complex’ arithmetic, which typically returns complex (re=NaN, im=NaN) (but we
have not seen a guarantee for that). For + and —, R’s own handling works strictly “coordinate wise”.

Operations involving complex NA, i.e., NA_complex_, return NA_complex_.

Only since R version 4.4.0, as.complex ("11i") gives 11, it returned NA_complex_ with a
warning, previously.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic; polyroot finds all n complex roots of a polynomial of degree n.

Examples

require (graphics)
0i ~ (=3:3)

matrix (1i® (-6:5), nrow = 4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector

z <- complex (real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):

722 <— 1:2 + 1i%(8:9)

conditions

The Arg(.) 1is an angle:

zz <— (rep(l:4, length.out = 9) + 1i%(9:1))/10

zz.shift <- complex (modulus = Mod(zz), argument = Arg(zz) + pi)

plot(zz, xlim = c(-1,1), ylim = c(-1,1), col = "red", asp = 1,
main = expression(paste ("Rotation by "," ", pi == 180"0)))

abline(h = 0, v = 0, col = "blue"
points(zz.shift, col = "orange")

’

lty = 3)

as.complex (<some NA>): numbers keep Im = 0:
stopifnot (identical (as.complex (NA_real_), NA_real_ + 0i)) # has always been true
NA_real_, NA_character_, NA_complex_),

NAs <- vapply(list(NA, NA_integer_,

as.complex, 0+01i)

stopifnot (is.na(NAs), is.na(Re(NAs))) # has always been true
showC <- function(z) noquote (pasteO(" (", Re(z), ",", Im(z), ")"))
showC (NAs)

Im(NAs) # [0 O O NA NA] \\ in R <= 4.3.x was [NA NA 0 NA NA]

stopifnot (Im(NAs) [1:3] == 0)

103

The exact result of this *depends* on the platform, compiler, math-library:
(NpNA <- NaN + NA_complex_) ; str(NpNA) # xbehavesx as 'cplx NA'
stopifnot (is.na (NpNA), is.na (NA_complex_), is.na(Re(NA_complex_)),
showC (NpNA) # but does not always show ' (NaN,NA)'

and this is not TRUE everywhere:

identical (NpNA, NA_complex_)

is.na (Im(NA_complex_))

showC (NA_complex_) # always == (NA,NA)
conditions Condition Handling and Recovery
Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-

ings.

Usage

tryCatch (expr, ..., finally)
withCallingHandlers (expr, ...)
globalCallingHandlers(...)

signalCondition (cond)

simpleCondition (message, call = NULL)

simpleError (message, call = NULL)

simpleWarning (message, call = NULL)

simpleMessage (message, call = NULL)

errorCondition (message, ..., class = NULL, call = NULL)
warningCondition (message, ..., class = NULL, call = NULL)

S3 method for class 'condition'

as.character(x, ...)

104 conditions

S3 method for class 'error'
as.character(x, ...)

S3 method for class 'condition'
print(x, ...)

S3 method for class 'restart'
print(x, ...)

conditionCall (c)

S3 method for class 'condition'
conditionCall (c)
conditionMessage (c)

S3 method for class 'condition
conditionMessage (c)

withRestarts (expr, ...)

computeRestarts (cond = NULL)
findRestart (name, cond = NULL)
invokeRestart (r, ...)
tryInvokeRestart (r, ...)
invokeRestartInteractively (r)

isRestart (x)
restartDescription (r)
restartFormals (r)

suspendInterrupts (expr)
allowInterrupts (expr)

.signalSimpleWarning(msg, call)
.handleSimpleError (h, msg, call)
.tryResumeInterrupt ()

Arguments
c a condition object.
call call expression.
cond a condition object.
expr expression to be evaluated.
finally expression to be evaluated before returning or exiting.
h function.
message character string.
msg character string.
name character string naming a restart.
r restart object.
X object.
class character string naming a condition class.

additional arguments; see details below.

conditions 105

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

The function errorCondition can be used to construct error conditions of a particular class
with additional fields specified as the ... argument. warningCondition is analogous for
warnings.

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the . . . argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current t ryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the . . . argument to t ryCatch are established for the duration of the eval-
uation of expr. If no condition is signaled when evaluating expr then tryCatch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single t ryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the t ryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

globalCallingHandlers establishes calling handlers globally. These handlers are only called
as a last resort, after the other handlers dynamically registered with withCallingHandlers
have been invoked. They are called before the error global option (which is the legacy interface
for global handling of errors). Registering the same handler multiple times moves that handler on
top of the stack, which ensures that it is called first. Global handlers are a good place to define a
general purpose logger (for instance saving the last error object in the global workspace) or a general
recovery strategy (e.g. installing missing packages via the retry_loadNamespace restart).

Like withCallingHandlers and tryCatch, globalCallingHandlers takes named
handlers. Unlike these functions, it also has an options-like interface: you can estab-
lish handlers by passing a single list of named handlers. To unregister all global handlers,
supply a single ‘NULL‘. The list of deleted handlers is returned invisibly. Finally, calling
globalCallingHandlers without arguments returns the list of currently established handlers,
visibly.

106 conditions

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart. If no restart is found, an error is thrown.

tryInvokeRestart is a variant of invokeRestart that returns silently when the restart
cannot be found with findRestart. Because a condition of a given class might be signalled
with arbitrary protocols (error, warning, etc), it is recommended to use this permissive variant
whenever you are handling conditions signalled from a foreign context. For instance, invocation
of a "muffleWarning" restart should be optional because the warning might have been sig-
nalled by the user or from a different package with the stop or message protocols. Only use
invokeRestart when you have control of the signalling context, or when it is a logical error if
the restart is not available.

New restarts for withRestarts can be specified in several ways. The simplest is in name =
function form where the function is the handler to call when the restart is invoked. Another
simple variant is as name = st ring where the string is stored in the description field of the
restart object returned by f indRestart; in this case the handler ignores its arguments and returns
NULL. The most flexible form of a restart specification is as a list that can include several fields,
including handler, description, and test. The test field should contain a function of one
argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if it does
not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

Interrupts can be suspended while evaluating an expression using suspendInterrupts. Subex-
pression can be evaluated with interrupts enabled using allowInterrupts. These functions can
be used to make sure cleanup handlers cannot be interrupted.

.signalSimpleWarning, .handleSimpleError, and .tryResumelnterrupt are
used internally and should not be called directly.

References
The t ryCat ch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and t ry is essentially a simplified version of t ryCatch.
assertCondition in package tools fests that conditions are signalled and works with several
of the above handlers.

conflicts 107

Examples

tryCatch(l, finally = print ("Hello"))
e <- simpleError ("test error")

Not run:

stop (e)

tryCatch(stop(e), finally = print ("Hello"))
tryCatch (stop ("fred"), finally = print ("Hello"))

End (Not run)

tryCatch(stop(e), error = function(e) e, finally = print ("Hello"))
tryCatch(stop ("fred"), error = function(e) e, finally = print ("Hello"))
withCallingHandlers ({ warning("A"); 1+2 }, warning = function(w) {})

Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }

End (Not run)
withRestarts (invokeRestart ("foo", 1, 2), foo = function(x, y) {x + y})

##-—> More examples are part of

#H#——> demo (error.catching)
conflicts Search for Masked Objects on the Search Path
Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts (where = search (), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search
path.
Value

If detail = FALSE, a character vector of masked objects. If detail = TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[1] "1Im"

108 connections

#
Spackage:base
[1] "lm"

Remove things from your "workspace" that mask others:
remove (list = conflicts(detail = TRUE)S$.GlobalEnv)

connections Functions to Manipulate Connections (Files, URLs, ...)

Description

Functions to create, open and close connections, i.e., “generalized files”, such as possibly com-
pressed files, URLS, pipes, etc.

Usage
file(description = "", open = "", blocking = TRUE,
encoding = getOption ("encoding"), raw = FALSE,
method = getOption("url.method", "default"))
url (description, open = "", blocking = TRUE,
encoding = getOption ("encoding"),
method = getOption ("url.method", "default"),
headers = NULL)
gzfile(description, open = "", encoding = getOption ("encoding"),

compression = 6)

bzfile (description, open

nn
4

encoding = getOption ("encoding"),

compression = 9)
xzfile (description, open = "", encoding = getOption ("encoding"),
compression = 6)
zstdfile (description, open = "", encoding = getOption ("encoding"),
compression = 9)
unz (description, filename, open = "", encoding = getOption ("encoding"))
pipe (description, open = "", encoding = getOption ("encoding"))
fifo(description, open = "", blocking = FALSE,
encoding = getOption ("encoding"))
socketConnection (host = "localhost", port, server = FALSE,
blocking = FALSE, open = "at",
encoding = getOption ("encoding"),

timeout getOption ("timeout"),
options = getOption ("socketOptions"))

connections

109

serverSocket (port)

socketAccept (socket, blocking = FALSE, open = "a+",

open (con,

encoding = getOption ("encoding"),
timeout = getOption("timeout"),
options = getOption ("socketOptions"))

.)

S3 method for class 'connection'
open (con, open = "r", blocking = TRUE, ...)

close (con,

)

S3 method for class 'connection'

close (con,
flush (con)

isOpen (con,

rw =

type = "rw", ...)

n ")

isIncomplete (con)

socketTimeout (socket, timeout = -1)
Arguments

description character string. A description of the connection: see ‘Details’.

open character string. A description of how to open the connection (if it should be
opened initially). See section ‘Modes’ for possible values.

blocking logical. See the ‘Blocking’ section.

encoding the name of the encoding to be assumed. See the ‘Encoding’ section.

raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-
ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

method character string, partially matched to c("default", "internal",
"wininet", "libcurl"): see ‘Details’.

headers named character vector of HTTP headers to use in HTTP requests. It is ig-
nored for non-HTTP URLs. The User-Agent header, coming from the
HTTPUserAgent option (see opt ions) is used as the first header, automati-
cally.

compression integer in 0-9 (1-19 for zstdfile). The amount of compression to be ap-
plied when writing, from minimal to maximal available. For xzfile and
zstdfile can also be negative: see the ‘Compression’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

options optional character vector with options. Currently only "no-delay" is sup-
ported on TCP sockets.

filename a filename within a zip file.

host character string. Host name for the port.

110 connections

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

socket a server socket listening for connections.

con a connection.

type character string. Currently ignored.

rw character string. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

Details

The first eleven functions create connections. By default the connection is not opened (except for
a socket connection created by socketConnection or socketAccept and for server socket
connection created by serverSocket), but may be opened by setting a non-empty value of
argument open.

For file the description is a path to the file to be opened (when tilde expansion is done) or a
complete URL (when it is the same as calling url), or "" (the default) or "clipboard" (see
the ‘Clipboard’ section). Use "stdin" to refer to the C-level ‘standard input’ of the process
(which need not be connected to anything in a console or embedded version of R, and is not in
RGui on Windows). See also stdin () for the subtly different R-level concept of stdin. See
nullfile () for a platform-independent way to get filename of the null device.

For url the description is a complete URL including scheme (such as ‘http://’, ‘https://’,
‘ftp:// or ‘file://’). Method "internal" is that available since connections were in-
troduced but now mainly defunct. Method "wininet™" is only available on Windows (it uses
the WinlINet functions of that OS) and method "libcurl" (using the library of that name:
https://curl.se/libcurl/) is nowadays required but was optional on Windows before
R 4.2.0. Method "default™" currently uses method "internal™ for ‘file://’ URLs and
"libcurl" for all others. Which methods support which schemes has varied by R version — cur-
rently "internal" supports only ‘file://’; "wininet" supports ‘file://’, ‘http://’
and ‘https://’. Proxies can be specified: see download.file.

For gzfile the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and those compressed by bzip2, xz, 1zma or zstd.

For bzfile the description is the path to a file compressed by bzip2.

For xz 1 1e the description is the path to a file compressed by xz (https://en.wikipedia.
org/wiki/Xz) or (for reading only) 1zma (https://en.wikipedia.org/wiki/LZMA).

For zstdfile the description is the path to a file compressed by zstd (https://en.
wikipedia.org/wiki/Zstd).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘. zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For £1 fo the description is the path of the fifo. (Support for £i fo connections is optional but they
are available on most Unix platforms and on Windows.)

The intention is that £i 1e and gz £i 1e can be used generally for text input (from files, ‘http://’
and ‘https://’ URLs) and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

https://curl.se/libcurl/
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/LZMA
https://en.wikipedia.org/wiki/Zstd
https://en.wikipedia.org/wiki/Zstd

connections 111

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

f1lush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for a file or (on most platforms) a £ifo connection the description is "", the file/fifo is
immediately opened (in "w+" mode unless open = "w+b" is specified) and unlinked from the file
system. This provides a temporary file/fifo to write to and then read from.

socketConnection (server=TRUE) creates a new temporary server socket listening on the
given port. As soon as a new socket connection is accepted on that port, the server socket is automat-
ically closed. serverSocket creates a listening server socket which can be used for accepting
multiple socket connections by socketAccept. To stop listening for new connections, a server
socket needs to be closed explicitly by close.

socketConnection and socketAccept support setting of socket-specific options. Currently
only "no-delay" is implemented which enables the TCP_NODELAY socket option, causing the
socket to flush send buffers immediately (instead of waiting to collect all output before sending).
This option is useful for protocols that need fast request/response turn-around times.

socketTimeout sets connection timeout of a socket connection. A negative t imeout can be
given to query the old value.

Value

file, pipe, fifo, wurl, gzfile, bzfile, xzfile, zstdfile, unz,
socketConnection, socketAccept and serverSocket return a connection object
which inherits from class "connection" and has a first more specific class.

open and flush return NULL, invisibly.

close returns either NULL or an integer status, invisibly. The status is from when the connection
was last closed and is available only for some types of connections (e.g., pipes, files and fifos):
typically zero values indicate success. Negative values will result in a warning; if writing, these
may indicate write failures and should not be ignored. Connections should be closed explicitly
when finished with to avoid wasting resources and to reduce the risk that some buffered data in
output connections would be lost (see on.exit () for how to run code also in case of error).

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether the last read attempt from a non-blocking con-
nection provided no data (currently no data from a socket or an unterminated line in readLines),
or for an output text connection whether there is unflushed output. See example below.

socketTimeout returns the old timeout value of a socket connection.

URLs

url and f£ile support URL schemes ‘file://’, ‘http://’, ‘https:// and ‘ftp:// .
method = "1libcurl" allows more schemes: exactly which schemes is platform-dependent (see
libcurlVersion), but all platforms will support ‘https://’ and most platforms will support
‘ftps:// .

Support for the ‘ftp://’ scheme by the "internal™ method was deprecated in R 4.1.1 and
removed in R 4.2.0.

Most methods do not percent-encode special characters such as spaces in ‘http://’ URLs (see
URLencode), but it seems the "wininet " method does.

112 connections

Anoteon ‘file://’ URLs (which are handled by the same internal code irrespective of argument
method). The most general form (from RFC1738)is ‘file://host/path/to/file’, but R
only accepts the form with an empty host field referring to the local machine.

On a Unix-alike, this is then ‘file:///path/to/file’, where ‘path/to/file’ is relative
to °/’. So although the third slash is strictly part of the specification not part of the path, this can
be regarded as a way to specify the file */path/to/file’. Itis not possible to specify a relative
path using a file URL.

In this form the path is relative to the root of the filesystem, not a Windows concept. The stan-
dard form on Windows is ‘file:///d:/R/repos’: for compatibility with earlier versions of
R and Unix versions, any other form is parsed as R as ‘file://’ plus path_to_file. Also,
backslashes are accepted within the path even though RFC1738 does not allow them.

No attempt is made to decode a percent-encoded ‘file:’ URL: call URLdecode if necessary.
All the methods attempt to follow redirected HTTP and HTTPS URLs.
Server-side cached data is always accepted.

Function download. file and several contributed packages provide more comprehensive facili-
ties to download from URLs.

Modes

Possible values for the argument open are

"r"or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys.umask).

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work
for any form of line ending). Various R operations are possible in only one of the modes: for
example pushBack is text-oriented and is only allowed on connections open for reading in text
mode, and binary operations such as readBin, load and save can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open =""is
given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode will be "r". (gzfile, bzfile, xzfile and zstdfile connections
are exceptions, as the compressed file always has to be opened in binary mode and no conversion
of line-endings is done even on Windows, so the default mode is interpreted as "rb".) Most

connections 113

operations that need write access or text-only or binary-only mode will override the default mode
of a non-yet-open connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers may or may not read beyond end of the first stream: currently R does so for gzfile,
bzfile,xzfile and zstdfile connections.

Compression

R supports gzip, bzip2, zstd and xz compression (also read-only support for its precursor,
1lzma compression).

For reading, the type of compression (if any) can be determined from the first few bytes of the
file. Thus for file (raw = FALSE) connections, if openis "", "r" or "rt" the connection
can read any of the compressed file types as well as uncompressed files. (Using "rb" will allow
compressed files to be read byte-by-byte.) Similarly, gzfile connections can read any of the
forms of compression and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if open is unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form
of compression under that name, specify open = "w" when the connection is created or unlink
the file before creating the connection.)

For write-mode connections, compress specifies how hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb for
xzfile (compress = 9)). For xzfile negative values of compress correspond to adding
the xz argument ‘—e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory) usage: but if
you are using xz compression you are probably looking for high compression.

For z st d negative numbers correspond to the ‘~—fast=" compression levels which are faster but
yield slightly worse compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal
compression 30% better. The experience with R save files is similar, but on some large ‘. rda’
files xz compression is much better than the other two. With current computers decompression
times even with compress = 9 are typically modest and reading compressed files is usually faster
than uncompressed ones because of the reduction in disc activity.

The zstd compression support is currently optional and will be only included if the underlying
library is present at build time. All related functions will return an error if the support is not present.
It typically offers slightly worse compression than x z, but is orders of magnitude faster to compress.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same
way as it would be given to iconv: see that help page for how to find out what encoding names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done.

When writing to a text connection, the connections code always assumes its input is in native encod-
ing, so e.g. writeLines has to convert text to native encoding. The native encoding is UTF-8 on
most systems (since R 4.2 also on recent Windows) and can represent all characters. writeLines
does not do the conversion when useBytes=TRUE (for expert use only, only useful on systems

114 connections

with native encoding other than UTF-8), but the connections code still behaves as if the text was
in native encoding, so any attempt to convert encoding (encoding argument other than "" and
"native.enc") in connections will produce incorrect results.

When reading from a text connection, the connections code re-encodes the input to native encod-
ing (from the encoding given by the encoding argument). On systems where UTF-8 is not the
native encoding, one can read text not representable in the native encoding using readLines and
scan by providing them with an unopened connection that has been created with the encoding
argument specifying the input encoding. readLines and scan would then instruct the connec-
tions code to convert the text to UTF-8 (instead of native encoding) and they will return it marked
(aka declared, see Encoding) as "UTF-8". Finally and for expert use only, one may disable
re-encoding of input by specifying "" or "native.enc" as encoding for the connection, but
then mark the text as being "UTF—-8" or "latinl" viathe encoding argument of readLines
and scan.

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.,
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark OxFEFF then these
are removed as some implementations of iconv do not accept BOMs. Note that whereas most
implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte
order, some (including earlier versions of glibc) will not. There is a subtle distinction between
"UTF-16" and "UCS-2" (see https://en.wikipedia.org/wiki/UTF~-16): the use of
characters in the ‘Supplementary Planes’ which need surrogate pairs is very rare so "UCS-2LE"
is an appropriate first choice (as it is more widely implemented).

The encoding "UTF-8-BOM" is accepted for reading and will remove a Byte Order Mark
if present (which it often is for files and webpages generated by Microsoft applications). If
a BOM is required (it is not recommended) when writing it should be written explicitly,
e.g. by writeChar ("\ufeff", con, eos =NULL) or writeBin(as.raw(c (0xef,
Oxbb, 0xbf)), binary_con)

Encoding names "ut £8", "mac" and "macroman" are not portable, and not supported on all
current R platforms. "UTF-8" is portable and "macintosh™" is the official (and most widely
supported) name for ‘Mac Roman’. (R maps "ut £8" to "UTF-8" internally.)

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

It may be possible to deduce the current native encoding from
Sys.getlocale ("LC_CTYPE"), but not all OSes record it.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes), fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

https://en.wikipedia.org/wiki/UTF-16

connections 115

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options ("timeout"). Note that this is a timeout for no response, not for the whole operation.
The timeout is set at the time the connection is opened (more precisely, when the last connection of
that type — ‘http:’, ‘“ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file ().

Clipboard

file can be used with description="clipboard" in mode "r" only. This
reads the X11 primary selection (see https://specifications.freedesktop.org/
clipboard-spec/latest), which can also be specified as "X11_primary" and the sec-
ondary selection as "X11_secondary". On most systems the clipboard selection (that used by
‘Copy’ from an ‘Edit’ menu) can be specified as "X11_clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the X11 selections may be able to do so via xclip
(https://github.com/astrand/xclip) or xsel (https://www.vergenet.net/
~conrad/software/xsel/), for example by pipe ("xclip -i", "w") for the primary
selection.

macOS users can use pipe ("pbpaste") and pipe ("pbcopy", "w") toread from and write
to that system’s clipboard.

File paths

In most cases these are translated to the native encoding.

The exceptions are £ile and pipe on Windows, where a description which is marked as
being in UTF-8 is passed to Windows as a ‘wide’ character string. This allows files with names not
in the native encoding to be opened on file systems which use Unicode file names (such as NTFS
but not FAT32).

‘ftp://’ URLs

Most modern browsers do not support such URLs, and ‘https://’ ones are much preferred for
use in R.

It is intended that R will continue to allow such URLSs for as long as 1ibcurl does, but as they
become rarer this is increasingly untested. What ‘protocols’ the version of 1ibcurl being used
supports can be seen by calling 1ibcurlVersion ().

https://specifications.freedesktop.org/clipboard-spec/latest
https://specifications.freedesktop.org/clipboard-spec/latest
https://github.com/astrand/xclip
https://www.vergenet.net/~conrad/software/xsel/
https://www.vergenet.net/~conrad/software/xsel/

116 connections

Number of connections

There is a limit on the number of connections which can be allocated (not necessarily open) at any
one time. It is good practice to close connections when finished with, but if necessary garbage-
collection will be invoked to close those connections without any R object referring to them.

The default limit is 128 (including the three terminal connections, stdin, stdout and stderr).
This can be increased when R is started using the option ‘—-max—-connections=N’, where the
maximum allowed value is 4096.

However, many types of connections use other resources which are themselves limited. Notably
on Unix, ‘file descriptors’ which by default are per-process limited: this limits the number of con-
nections using files, pipes and fifos. (The default limit is 256 on macOS (and Solaris) but 1024
on Linux. The limit can be raised in the shell used to launch R, for example by ulimit —n.)
File descriptors are used for many other purposes including dynamically loading DSO/DLLs (see
dyn. load) which may use up to 60% of the limit.

Windows has a default limit of 512 open C file streams: these are used by at least file, gzfile,
bzfile, xzfile, zstdfile, pipe, url and unz connections applied to files (rather than
URLs).

Package parallel’s makeCluster uses socket connections to communicate with the worker pro-
cesses, one per worker.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections. The default open mode in R is "r" except for socket connections. This differs from
S, where it is the equivalent of "r+", known as "« ".

On (historic) platforms where vsnprintf does not return the needed length of output there is
a 100,000 byte output limit on the length of a line for text output on fifo, gzfile, bzfile,
xzfile and zstdfile connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001). “Connections.” R News, 1(1), 16-7. https://www.r—-project.org/
doc/Rnews/Rnews_2001-1.pdf.

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readLines, writeLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar,
writeBin, writeChar, load and save.

capabilities to seeif £ifo connections are supported by this build of R.
gzcon to wrap gz ip (de)compression around a connection.

options HTTPUserAgent, internet.info and t imeout are used by some of the methods
for URL connections.

memCompress for more ways to (de)compress and references on data compression.
extSoftVersion for the versions of the z1ib (for gzfile), bzip2 and xz libraries in use.

To flush output to the Windows and macOS consoles, see f1ush.console.

https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

connections 117

Examples

zzfil <- tempfile(fileext=".data")

zz <—- file(zzfil, "w") # open an output file connection

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat ("One more line\n", file = zz)

close(zz)

readLines (zzfil)

unlink (zzfil)

zzfil <- tempfile(fileext=".gz")

zz <- gzfile(zzfil, "w") # compressed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzfile(zzfil))

close(zz)

unlink (zzfil)

zz # an invalid connection

zzfil <- tempfile(fileext=".bz2")

zz <—- bzfile(zzfil, "w") # bzip2-ed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

zz # print () method: invalid connection

print (readlLines (zz <- bzfile(zzfil)))

close(zz)

unlink (zzfil)

An example of a file open for reading and writing
Tpath <- tempfile("test")

Tfile <- file(Tpath, "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

seek (Tfile, 0, rw = "r") # reset to beginning
readLines (Tfile)

cat ("ghi\n", file = Tfile)

readLines (Tfile)

Tfile # -> print() : "valid" connection
close (Tfile)
Tfile # —-> print () : "invalid" connection

unlink (Tpath)

We can do the same thing with an anonymous file.
Tfile <- file()

cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

close (Tfile)

Not run: ## fifo example -- may hang even with OS support for fifos
if (capabilities("fifo")) {

zzfil <- tempfile(fileext="-fifo")

zz <— fifo(zzfil, "w+")

writeLines ("abc", zz)

print (readLines (zz))

close (zz)

118

unlink (zzfil)

}
End (Not run)

Unix examples of use of pipes

read listing of current directory
readLines (pipe("1ls —-1"))

remove trailing commas. Suppose

Not run: % cat data2_

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End (Not run)

Then read this by

scan (pipe("sed -e s/,$// data2_"), sep = ",")

convert decimal point to comma in output: see also write.table

both R strings and (probably) the shell need \ doubled
zzfil <- tempfile("outfile")

zz <- pipe (paste("sed s/\\\\./,/ >", zzfil), "w")

cat (format (round (stats::rnorm(48), 4)), fill = 70, file = zz)
close(zz)

file.show(zzfil, delete.file = TRUE)

Not run:
example for a machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines (pasteO (system("whoami", intern = TRUE), "\r"), con)
gsub (" *$", "", readLines(con))

close (con)

End (Not run)

Not run:

Two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection (port = 6011, server = TRUE)
writeLines (LETTERS, conl)

close (conl)

R process 2
con2 <- socketConnection(Sys.info () ["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines (con2)
while (isIncomplete (con2)) {
Sys.sleep (1)
z <- readLines (con2)
if (length(z)) print(z)
}

close (con2)

examples of use of encodings

connections

Constants 119

write a file in UTF-8

cat (x, file = (con <- file("foo", "w", encoding = "UTF-8"))); close(con)
read a 'Windows Unicode' file
A <- read.table(con <- file("students", encoding = "UCS-2LE")); close (con)

End (Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

pi

Details
R has a small number of built-in constants.
The following constants are available:

* LETTERS: the 26 upper-case letters of the Roman alphabet;

* letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;
* month.name: the English names for the months of the year;

e pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data,DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

120 Control

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4% (4xatan(l/5) - atan(1/239))

months in English

month.name

months in your current locale
format (ISOdate (2000, 1:12, 1), "%B")
format (ISOdate (2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors ()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if (cond) expr
if (cond) cons.expr else alt.expr

for (var in seq) expr
while (cond) expr
repeat expr

break

next

X %1%y

Control 121

Arguments
cond A length-one logical vector that is not NA. Other types are coerced to logical if
possible, ignoring any class. (Conditions of length greater than one are an error.)
var A syntactical name for a variable.
seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector. This can
be a long vector.

expr, cons.expr,alt.expr, X,y
An expression in a formal sense. This is either a simple expression or a so-called
compound expression, usually of the form { exprl ; expr2 }.

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ . . }) around your statements, e.g., after
if(..) or for(....). In particular, you should not have a newline between } and else to
avoid a syntax error in entering a 1 £ . . . else construct at the keyboard or via source. For that
reason, one (somewhat extreme) attitude of defensive programming is to always use braces, e.g.,
for if clauses.

The seqin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seqg. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

The null coalescing operator % | | % is a simple 1-line function: x % | | % y is an idiomatic way to
call

if (is.null(x)) y else x
or equivalently, of course,
if(!is.null(x)) x else y

Inspired by Ruby, it was first proposed by Hadley Wickham.

Value

if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there is no else).

for,while and repeat return NULL invisibly. for sets var to the last used element of seq,
or to NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

122 crossprod

Examples

for(i in 1:5) print(l:i)
for(n in c¢(2,5,10,20,50)) {
x <— stats::rnorm(n)
cat(n, ": ", sum(x”*2), "\n", sep = "")
}
f <- factor (sample(letters[1:5], 10, replace = TRUE))
for(i in unique(f)) print (i)

res <- {}
res %||% "alternative result"
x <— head(x) %||% stop("parsed, but xnotx evaluated..")

res <- if(sum(x) > 7.5) mean(x) # may be NULL
res %||% "sum(x) <= 7.5"

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see 1icense for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use
their work.

Details

The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

crossprod Matrix Cross-Product

Description
Given matrices x and y as arguments, return a matrix cross-product. This is formally equivalent to
(but faster than) the call t (x) %$*% y (crossprod)or x $*% t (y) (tcrossprod).

These are generic functions since R 4.4.0: methods can be written individually or via the matOps
group generic function; it dispatches to S3 and S4 methods.

Usage
crossprod(x, y = NULL, ...)
tcrossprod(x, y = NULL, ...)
Arguments
X, Y numeric or complex matrices (or vectors): y = NULL is taken to be the same

matrix as x. Vectors are promoted to single-column or single-row matrices,
depending on the context.

potential further arguments for methods.

Cstack_info 123

Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.

In the same situation, these matrix products (also % * %) are more flexible in promotion of vectors to
row or column matrices, such that more cases are allowed, since R 3.2.0.

The propagation of NaN/Inf values, precision, and performance of matrix products can be con-
trolled by options ("matprod").

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%% and outer product $0%.

Examples
(z <— crossprod(l:4)) # = sum(l + 272 + 372 + 4"2)
drop (z) # scalar
x <= 1:4; names(x) <- letters[l:4]; x
tcrossprod(as.matrix(x)) # 1is

identical (tcrossprod(as.matrix(x)),
crossprod (t (x)))
tcrossprod(x) # no dimnames

m <- matrix(l:6, 2,3) ; v <- 1:3; v2 <- 2:1
stopifnot (identical (tcrossprod(v, m), v %$x% t(m)),
identical (
identical (

tcrossprod(v, m), crossprod(v, t(m))),
crossprod(m, v2), t(m) %*x% v2))

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info ()

124 cumsum

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux (using
glibc), macOS and FreeBSD but a heuristic is used on other platforms. Because this might be
slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used on
embedded uses of R on platforms where the stack base information is not thought to be accurate.)

The ‘evaluation depth’ is the number of nested R expressions currently under evaluation: this has a
limit controlled by options ("expressions").

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.
current The estimated current usage (in bytes), possibly NA.
direction 1 (stack grows down, the usual case) or —1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info ()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments
X a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

curlGetHeaders 125

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with x). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA,
as does integer overflow in cumsum (with a warning). In the complex case with NAs, these NA
elements may have finite real or imaginary parts, notably for cumsum (), fulfilling the identity
Im(cumsum(x)) = cumsum (Im(x)).

S4 methods
cumsum and cumprod are S4 generic functions: methods can be defined for them individually or
via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum (1:10)
cumprod (1:10)
cummin (c(3:1, 2:0, 4:2))
cummax (c(3:1, 2:0, 4:2))

curlGetHeaders Retrieve Headers from URLs

Description
Retrieve the headers for a URL for a supported protocol such as ‘http://’, ‘ftp://’,
‘https:// and ‘ftps://’.

Usage

curlGetHeaders (url, redirect = TRUE, verify = TRUE,
timeout = 0L, TLS = "")

Arguments

url character string specifying the URL.

redirect logical: should redirections be followed?

verify logical: should certificates be verified as valid and applying to that host?

timeout integer: the maximum time in seconds the request is allowed to take. Non-
positive and invalid values are ignored (including the default). (Added in R
4.1.0.)

TLS character: the minimum version of the TLS protocol to be used for ‘https://’

URLs: the default (" ") is no restriction beyond that of the underlying 1ibcurl
(usually 1.0). Other valid valuesare "1.1","1.2" (both for 1ibcurl 7.34.0
and later) and "1.3" (7.52.0 and later), if supported by the underlying version
of 1ibcurl and the SSL library it uses.

126 cut

Details

This reports what curl —-I —L or curl —I would report. For a ‘ftp://’ URL the ‘headers’ are
a record of the conversation between client and server before data transfer.

Only 500 header lines will be reported: there is a limit of 20 redirections so this should suffice (and
even 20 would indicate problems).

If argument t imeout is not set to a positive integer this uses getOption ("timeout") which
defaults to 60 seconds. As the request cannot be interrupted you may want to consider a shorter
value.

To see all the details of the interaction with the server(s) set options (internet.info=1).

HTTPI[S] servers are allowed to refuse requests to read the headers and some do: this will result in
astatusof 405.

For possible issues with secure URLs (especially on Windows) see download.file.

There is a security risk in not verifying certificates, but as only the headers are captured it is slight.
Usually looking at the URL in a browser will reveal what the problem is (and it may well be
machine-specific).

Value

A character vector with integer attribute "status" (the last-received ‘status’ code). If redirection
occurs this will include the headers for all the URLSs visited.

For the interpretation of ‘status’ codes see https://en.wikipedia.org/wiki/List_
of HTTP_status_codes and https://en.wikipedia.org/wiki/List_of_ FTP_
server_return_codes. A successful FTP connection will usually have status 250, 257 or
350.

See Also

capabilities ("libcurl") to see if this is supported. 1ibcurlVersion for the version
of 1ibcurl in use.

options HTTPUserAgent and t imeout are used.

Examples

needs Internet access, results vary

curlGetHeaders ("http://bugs.r-project.org") ## this redirects to https://
2023-04: replaces slow and unreliable https://httpbin.org/status/404
curlGetHeaders ("https://developer.R-project.org/inet-tests/not-found")

returns status

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

cut

127

Usage

cut (x, ...)

Default S3 method:
cut (x, breaks, labels = NULL,
include. lowest FALSE, right = TRUE, dig.lab = 3,

ordered_result = FALSE, ...)
Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more unique cut points or a single number
(greater than or equal to 2) giving the number of intervals into which x is to be
cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using " (a, b] " interval notation. If labels = FALSE, simple integer codes
are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result
logical: should the result be an ordered factor?

further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created, one of which includes the single value.)

If a 1abels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as " (b1, b2]", " (b2, b3]" etc. for right = TRUE and
as "[bl, b2)",...if right = FALSE. In this case, dig. lab indicates the minimum number
of digits should be used in formatting the numbers b1, b2, A larger value (up to 12) will be
used if needed to distinguish between any pair of endpoints: if this fails labels such as "Range3"
will be used. Formatting is done by formatC.

The default method will sort a numeric vector of breaks, but other methods are not required to
and labels will correspond to the intervals after sorting.

As from R3.2.0, getOption ("OutDec") is consulted when labels are constructed for 1abels
= NULL.

Value

A factor isreturned, unless 1abels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

128 cut

Note

Instead of table (cut (x, br)), hist (x, br, plot = FALSE) is more efficient and less
memory hungry. Instead of cut («, labels =FALSE), findInterval () is more efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval.

quantile for ways of choosing breaks of roughly equal content (rather than length).

.bincode for a bare-bones version.

Examples

7 <— stats::rnorm(10000)

table (cut (Z, breaks = -6:06))
sum (table (cut (Zz, breaks = -6:6, labels = FALSE)))
sum (graphics::hist (Z, breaks = -6:6, plot = FALSE) $counts)

cut (rep(1,5), 4) #-- dummy

tx0 <= c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <— rep(0:8, tx0)

stopifnot (table(x) == tx0)

table(cut (x, breaks = 8))
table (cut (x, breaks 3x(=2:5)))
table(cut(x, breaks = 3x(-2:5), right = FALSE))

##-—— some values OUTSIDE the breaks

table (cx <- cut(x, breaks = 2%x(0:4)))

table (cxl <- cut(x, breaks = 2x(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-— the first 9 wvalues O
which(is.na(cx1l)); x[is.na(cxl)] #-—— the last 5 wvalues 8

Label construction:
y <-— stats::rnorm(100)

table (cut (y, breaks = pi/3*(-3:3)))

table (cut (y, breaks = pi/3x(-3:3), dig.lab = 4))
table (cut (y, breaks = 1x(-3:3), dig.lab = 4))

extra digits don't "harm" here

table (cut (y, breaks = 1%(-3:3), right = FALSE))

#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)

cut (aaa, 3)

cut (aaa, 3, dig.lab = 4, ordered_result = TRUE)

one way to extract the breakpoints

cut. POSIXt

129

labs <- levels (cut (aaa, 3))

cbind (lower =
upper =

as.numeric(sub ("\\((.+),.x", "\\1", labs)),
as.numeric(sub (" [", 1%, ([*11*)\\1", "\\1", labs)))

cut .POSIXt

Convert a Date or Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt'

cut (x, breaks, labels = NULL, start.on.monday
FALSE, ...)

right =

TRUE,

S3 method for class 'Date'
cut (x, breaks, labels = NULL, start.on.monday = TRUE,

right =

Arguments

X

breaks

labels

FALSE, ...)

an object inheriting from class "POSIXt" or "Date".

a vector of cut points or number giving the number of intervals which x is to be
cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-
ceded by an integer and a space, or followed by "s". (For "Date" objects
only interval specifications using "day", "week", "month", "quarter"
and "year" are allowed.)

labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are included for the default value
of right). If 1abels = FALSE, simple integer codes are returned instead of
a factor.

start.on.monday

right, ...

Details

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

arguments to be passed to or from other methods.

Note that the default for right differs from the default method. Using include.lowest =
TRUE will include both ends of the range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals begin-
ning on January 1, April 1, July 1 or October 1 (based upon min (x)) as appropriate.

A vector of breaks will be sorted before use: 1abels should correspond to the sorted vector.

Value

A factor is returned, unless 1abels = FALSE which returns the integer level codes.

Values which fall outside the range of breaks are coded as NA, as are and NA values.

130 data.class

See Also

seq.POSIXt, seqg.Date, cut

Examples

random dates in a 10-week period
cut (ISOdate (2001, 1, 1) + 70%«86400*stats::runif (100), "weeks")
cut (as.Date ("2001/1/1") + 70xstats::runif (100), "weeks")

The standards all have midnight as the start of the day, but some

people incorrectly interpret it at the end of the previous day

tm <- seg(as.POSIXct ("2012-06-01 06:00"), by = "6 hours", length.out = 24)
aggregate(1:24, list(day = cut(tm, "days")), mean)

and a version with midnight included in the previous day:

aggregate (1:24, list (day = cut (tm, "days", right = TRUE)), mean)

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class (x)

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode (x) .

Simply speaking, data.class (x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class (x) is "numeric" even when x is classed.

See Also

class

data.frame

Examples

x <— LETTERS

131

data.class (factor (x)) # has a class attribute
data.class (matrix(x, ncol = 13)) # has a dim attribute
data.class (list (x)) # the same as mode (x)
data.class (x) # the same as mode (x)
stopifnot (data.class(1:2) == "numeric") # compatibility "rule"

data.frame

Data Frames

Description

The function data. frame () creates data frames, tightly coupled collections of variables which
share many of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame (.
check.names = TRUE, fix.empty.names = TRUE,
stringsAsFactors = FALSE)

Arguments

row.names

check.rows

check.names

., row.names = NULL, check.rows = FALSE,

these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.

NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

if TRUE then the rows are checked for consistency of length and names.

logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make . names) so that they are.

fix.empty.names

logical indicating if arguments which are “unnamed” (in the sense of not being
formally called as someName = arg) get an automatically constructed name
or rather name "". Needs to be set to FALSE even when check.names is
false if " " names should be kept.

stringsAsFactors

Details

logical: should character vectors be converted to factors? The ‘factory-fresh’
default has been TRUE previously but has been changed to FALSE for R 4.0.0.

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame". If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check.names = FALSE for

132 data.frame

data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional = TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with many
such methods. Character variables passed to data.frame are converted to factor columns if
not protected by I and argument stringsAsFactors is true. If a list or data frame or matrix
is passed to data.frame it is as if each component or column had been passed as a separate
argument (except for matrices protected by I).

Objects passed to data.frame should have the same number of rows, but atomic vectors (see
is.vector), factors and character vectors protected by I will be recycled a whole number of
times if necessary (including as elements of list arguments).

If row names are not supplied in the call to data . frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the ba-
sic story. If the arguments are all named and simple objects (not lists, matrices of data frames) then
the argument names give the column names. For an unnamed simple argument, a deparsed version
of the argument is used as the name (with an enclosing I (...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame
argument that contains a single column, the column name in the result is the column name in the ar-
gument. Finally, the names are adjusted to be unique and syntactically valid unless check .names
=FALSE.

Note
In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row . names argument.

References
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I,plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data. frame for subsetting methods and I (matrix (..)) examples;Math.data.frame

data.matrix

133

etc, about Group methods for data. frames; read.table, make.names, 11ist2DF for cre-

ating data frames from lists of variables.

Examples

L3 <- LETTERS[1:3]

char <- sample (L3, 10, replace = TRUE)

(d <- data.frame(x =1, y = 1:10, char = char))

The "same" with automatic column names:
data.frame(l, 1:10, sample (L3, 10, replace = TRUE))

is.data.frame (d)

enable automatic conversion of character arguments to factor columns:

(dd <- data.frame(d, fac = letters[1:10], stringsAsFactors = TRUE))
rbind(class = sapply(dd, class), mode = sapply(dd, mode))

stopifnot (1:10 == row.names (d)) # {coercion}
(d0 <= d[, FALSE]) # data frame with 0 columns and 10 rows
(d.0 <= d[FALSE, 1) # <0 rows> data frame (3 named cols)

(d00 <- dO[FALSE,]) # data frame with 0 columns and 0 rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their

internal codes.

Usage
data.matrix (frame, rownames.force = NA)
Arguments
frame a data frame whose components are logical vectors, factors or numeric or char-

acter vectors.
rownames.force

logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame

has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Character columns are first converted to
factors and then to integers. Any other column which is not numeric (according to is.numeric)
is converted by as .numeric or, for S4 objects, as (, "numeric"). If all columns are integer

(after conversion) the result is an integer matrix, otherwise a numeric (double) matrix.

134 date

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames . force) and names.

Otherwise, the result of as .matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix,data.frame, matrix.

Examples

DF <- data.frame(a = 1:3, b = letters([10:12],
c = seqg(as.Date("2004-01-01"), by = "week", length.out = 3),
stringsAsFactors = TRUE)

data.matrix (DF[1:2])

data.matrix (DF)

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date ()

Value

The string has the form "Fri Aug2011:11:001999", i.e., length 24, since it relies on
POSIX’s ct ime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dates 135

See Also
Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.
Examples
(d <= date())
nchar (d) == 24

something similar in the current locale
depending on ctime; e.g. %e could be %d:
format (Sys.time (), "%a %$b %e $H:$M:%S SY")

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

Usage

S3 method for class 'Date'
summary (object, digits = 12, ...)

S3 method for class 'Date'

print (x, max = NULL, ...)
Arguments
object, x a Date object to be summarized or printed.
digits number of significant digits for the computations.
max numeric or NULL, specifying the maximal number of entries to be printed. By

default, when NULL, getOption ("max.print™) used.
further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).
When printing there is assumed to be a year zero.

It is intended that the date should be an integer value, but this is not enforced in the internal repre-
sentation. Fractional days will be ignored when printing. It is possible to produce fractional days
via the mean method or by adding or subtracting (see Ops .Date).

When a date is converted to a date-time (for example by as.POSIXct or as.POSIX1t its time
is taken as midnight in UTC.

Printing dates involves conversion to class "POSIX1t " which treats dates of more than about 780
billion days (2.1 billion years) from present as NA.

For the many methods see methods (class = "Date"). Several are documented separately,
see below.

136 Dates

Warning
Do not use identical () on objects of class "Date". Their storage.mode may be
"double" or "integer", and which is chosen has depended on the version of R used to create
the object.

See Also

Sys .Date for the current date.
weekdays for convenience extraction functions.

Methods with extra arguments and documentation:

Ops.Date for operators on "Date" objects.
format .Date for conversion to and from character strings.
axis.Date and hist.Date for plotting.

seq.Date , cut.Date, and round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())

format (today, "%d $b %Y") # with month as a word

(tenweeks <- seq(today, length.out=10, by="1 week")) # next ten weeks
weekdays (today)

months (tenweeks)

(Dls <- as.Date(.leap.seconds))

Show use of year zero:

(z <- as.Date("01-01-01")) # how it is printed depends on the OS

z — 365 # so year zero was a leap year.

as.Date ("00-02-29")

if you want a different format, consider something like (if supported)
Not run: format(z, "%$04Y-%m-%d") # "0001-01-01"

format (z, "%_4Y-%m-%d") # " 1-01-01"

format (z, "%_Y-%m-%d") # "1-01-01"

End (Not run)

length(<Date>) <- n now works
ls <= Dls; length(ls) <- 12
12 <= Dls; length(l2) <= 5 + length(Dls)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical(ls, Dls[seqg_along(ls)])
identical (12, Dls[seq_along(l2)])
has filled with NA's
is.na(l2[(length(Dls)+1l) :1length(12)])

DateTimeClasses 137

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct" representing calendar dates and times.

Usage
S3 method for class 'POSIXct'
print(x, tz = "", usetz = TRUE, max = NULL,
digits = getOption("digits.secs"), ...)

S3 method for class 'POSIXct'
summary (object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

Arguments

x, object an object to be printed or summarized from one of the date-time classes.

tz,usetz for timezone formatting, passed to format .POSIXct.

max numeric or NULL, specifying the maximal number of entries to be printed. By
default, when NULL, getOption ("max.print™) used.

digits number of digits to format fractional seconds in the case of print () ; number
of significant digits for the computations: should be high enough to represent
the least important time unit exactly.
further arguments to be passed from or to other methods.

time date-time objects.

timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

z a numeric vector (in seconds).
lop one of ==, I=, <, <=, > or >=.
Details

There are two basic classes of date/times. Class "POSIXct " represents the (signed) number of sec-
onds since the beginning of 1970 (in the UTC time zone) as a numeric vector. Class "POSIX1t"
is internally a 1ist of vectors with components named sec, min, hour for the time, mday,
mon, and year, for the date, wday, yday for the day of the week and day of the year, i sdst,
a Daylight Saving Time flag, and sometimes (both optional) zone, a string for the time zone, and
gmtoff, offset in seconds from GMT, see the section ‘Details on POSIXIt’ below for more details.

The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the t ime_t data type,
“ct”), and ‘local time’ (or broken-down time, the ‘st ruct tm’ data type, “It”), from which they
also inherit their names.

138 DateTimeClasses

"POSIXct" is more convenient for including in data frames, and "POSIX1t " is closer to human-
readable forms. A virtual class "POSIXt " exists from which both of the classes inherit: it is used
to allow operations such as subtraction to mix the two classes.

Logical comparisons and some arithmetic operations are available for both classes. One can add or
subtract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using di £ £t ime. Be aware that "POSIX1t" objects will
be interpreted as being in the current time zone for these operations unless a time zone has been
specified.

Both classes may have an attribute "t zone", specifying the time zone. Note however that their
meaning differ, see the section ‘Time Zones’ below for more details.

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds (ac-
cording to this version of R’s data, 27 days have been 86401 seconds long so far, the last being
on (actually, immediately before) 2017-01-01: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. It seems
that some rare systems used to use leap seconds, but all known current platforms ignore them (as
required by POSIX). This is detected and corrected for at build time, so "POSIXct" times used
by R do not include leap seconds on any platform.

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct"
objects drops "t zone" attributes if they are not all the same.

A few times have specific issues. First, the leap seconds are ignored, and real times such as
"2005-12-3123:59:60" are (probably) treated as the next second. However, they will never
be generated by R, and are unlikely to arise as input. Second, on some OSes there is a problem in
the POSIX/C99 standard with "1969-12-31 23:59:59 UTC", which is —1 in calendar time
and that value is on those OSes also used as an error code. Thus as.POSIXct ("1969-12-31
23:59:59", format = "$Y-%m-%d $H:%$M:%S", tz="UTC") may give NA, and
hence as.POSIXct ("1969-12-3123:59:59", tz="UTC") will give "1969-12-31
23:59:00". Other OSes (including the code used by R on Windows) report errors separately and
so are able to handle that time as valid.

The print methods respect options ("max.print").

Time zones

"POSIX1t" objects will often have an attribute "tzone", a character vector of length 3 giv-
ing the time zone name (from the TZ environment variable or argument t z of functions creating

"POSIX1t" objects; "" marks the current time zone) and the names of the base time zone and
the alternate (daylight-saving) time zone. Sometimes this may just be of length one, giving the time
zone name.

"POSIXct" objects may also have an attribute "t zone", a character vector of length one. If
set to a non-empty value, it will determine how the object is converted to class "POSIX1t" and
in particular how it is printed. This is usually desirable, but if you want to specify an object in
a particular time zone but to be printed in the current time zone you may want to remove the
"tzone" attribute.

Details on POSIXIt

Class "POSIX1t" isinternally a named 1ist of vectors representing date-times, with the follow-
ing list components

sec 0-61: seconds, allowing for leap seconds.

min 0-59: minutes.

hour 0-23: hours.

DateTimeClasses 139

mday 1-31: day of the month.

mon 0-11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year (365 only in leap years).

isdst Daylight Saving Time flag. Positive if in force, zero if not, negative if unknown.

zone (Optional.) The abbreviation for the time zone in force at that time: " " if unknown (but " "
might also be used for UTC).

gmtoff (Optional.) The offset in seconds from GMT: positive values are East of the meridian.
Usually NA if unknown, but 0 could mean unknown.

The components must be in this order: that was only minimally checked prior to R 4.3.0. All
objects created in R 4.3.0 have the optional components. From earlier versions of R, the last two
components will not be present for times in UTC and are platform-dependent. Currently gmtof £
is set on almost all current platforms: those based on BSD or glibc (including Linux and macOS)
and those using the t zcode implementation shipped with R (including Windows and by default
macOS).

Note that the internal list structure is somewhat hidden, as many methods (including length (),
print () and str ()) apply to the abstract date-time vector, as for "POSIXct". One can extract
and replace single components via [indexing with rwo indices (see the examples).

The components of "POSIX1t" are integer vectors, except sec (double) and zone
(character). However most users will coerce numeric values for the first to real and the rest
bar zone to integer.

Components wday and yday are for information, and are not used in the conversion to calendar
time nor for printing, format (), orin as.character ().

However, component isdst is needed to distinguish times at the end of DST: typically lam to
2am occurs twice, first in DST and then in standard time. At all other times i sdst can be deduced
from the first six values, but the behaviour if it is set incorrectly is platform-dependent. For example
Linux/glibc when checked fixed up incorrect values in time zones which support DST but gave an
error on value 1 in those without DST.

For “ragged” and out-of-range vs “balanced” "POSIX1t" objects, see balancePOSIX1t ().

Sub-second Accuracy

Classes "POSIXct" and "POSIX1t" are able to express fractions of a second where the latter
allows for higher accuracy. Consequently, conversion of fractions between the two forms may not
be exact, but will have better than microsecond accuracy.

Fractional seconds are printed only if options ("digits.secs") isset: see strftime.

Valid ranges for times

The "POSIX1t" class can represent a very wide range of times (up to billions of years), but such
times can only be interpreted with reference to a time zone.

The concept of time zones was first adopted in the nineteenth century, and the Gregorian calen-
dar was introduced in 1582 but not universally adopted until 1927. OS services almost invariably
assume the Gregorian calendar and may assume that the time zone that was first enacted for the
location was in force before that date. (The earliest legislated time zone seems to have been London
on 1847-12-01.) Some OSes assume the previous use of ‘local time’ based on the longitude of a
location within the time zone.

140 DateTimeClasses

Most operating systems represent POSIXct times as C type long. This means that on 32-bit
OSes this covers the period 1902 to 2037. On all known 64-bit platforms and for the code we
use on 32-bit Windows, the range of representable times is billions of years: however, not all can
convert correctly times before 1902 or after 2037. A few benighted OSes used a unsigned type and
so cannot represent times before 1970.

Where possible the platform limits are detected, and outside the limits we use our own C code.
This uses the offset from GMT in use either for 1902 (when there was no DST) or that predicted
for one of 2030 to 2037 (chosen so that the likely DST transition days are Sundays), and uses the
alternate (daylight-saving) time zone only if isdst is positive or (if —1) if DST was predicted to
be in operation in the 2030s on that day.

Note that there are places (e.g., Rome) whose offset from UTC varied in the years prior to 1902,
and these will be handled correctly only where there is OS support.

There is no reason to assume that the DST rules will remain the same in the future: the US legislated
in 2005 to change its rules as from 2007, with a possible future reversion. So conversions for times
more than a year or two ahead are speculative. Other countries have changed their rules (and indeed,
if DST is used at all) at a few days’ notice. So representations and conversion of future dates are
tentative. This also applies to dates after the in-use version of the time-zone database — not all
platforms keep it up to date, which includes that shipped with older versions of R where used
(which it is by default on Windows and macOS).

Warnings

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys . timezone for valid settings.

Great care is needed when comparing objects of class "POSIX1t". Not only are components and
attributes optional; several components may have values meaning ‘not yet determined’ and the same
time represented in different time zones will look quite different.

The order of the list components of "POSIX1t" objects must not be changed, as several C-based
conversion methods rely on the order for efficiency.

Do not use identical () on objects of class "POSIXct", rather == or all.equal. Their
storage.mode may be "double" or "integer" and you should not rely on which is chosen.

References

Ripley, B. D. and Hornik, K. (2001). “Date-time classes.” R News, 1(2), 8—11. https://www.
r—-project.org/doc/Rnews/Rnews_2001-2.pdf.

See Also

Dates for dates without times.

as.POSIXct and as.POSIX1t for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

balanceP0OSIX1t () for balancing or filling “ragged” POSIXIt objects.

cut .POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays for convenience extraction functions.

https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf 141

Examples
(z <— Sys.time()) # the current date, as class "POSIXct"
Sys.time () - 3600 # an hour ago

as.POSIX1lt (Sys.time(), "GMT") # the current time in GMT
format (.leap.seconds) # the leap seconds in your time zone
print (.leap.seconds, tz = "America/Los_Angeles") # and in Seattle's

look at xinternalx representation of "POSIX1t"
leapS <- as.POSIX1lt (.leap.seconds)

names (unclass (leapS)) ; is.list (leapS)
str() on inner structure needs unclass(.):
utils::str(unclass(leapS), vec.len = 7)

show all (apart from "tzone" attr):
data.frame (unclass (leapS))

Extracting *singlex components of POSIX1lt objects:
leapS[1l : 5, "year"]
leapS[17:22, "mon"]

length(.) <- n now works for "POSIXct" and "POSIX1t"
for (lpS in list(.leap.seconds, leapS)) {
ls <- 1pS; length(ls) <- 12
12 <= 1pS; length(l2) <= 5 + length (1pS)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical (ls, 1lpS[seg_along(ls)])
identical (12, 1lpS[seqg_along(l2)])
has filled with NA's
is.na(l2[(length(1lpS)+1) :1length(12)])

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage
read.dcf (file, fields = NULL, all = FALSE, keep.white = NULL)
write.dcf (x, file = "", append = FALSE, useBytes = FALSE,
indent = 0.1 x getOption("width"),
width = 0.9 » getOption ("width"),
keep.white = NULL)

Arguments

file either a character string naming a file or a connection. " " indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).

142

fields

all

keep.white

append

useBytes

indent

width

Details

dcf

a character vector with the names of the fields to read from the DCF file. Default
is to read all fields.

a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If a1l is false (default), only the last such occur-
rence is used.

a character vector with the names of the fields for which whitespace should be
kept as is, or NULL (default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds
using strwrap.

the object to be written, typically a data frame. If not, it is attempted to coerce
% to a data frame.

logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.

logical to be passed to writeLines (), see there: “for expert use”.

a positive integer specifying the indentation for continuation lines in output en-
tries.

a positive integer giving the target column for wrapping lines in the output.

DCEF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-
rated by : (only the first : counts). The value can be empty (i.e., whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a *.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (i.e., whitespace only) lines.

6. Individual lines may not be arbitrarily long; prior to R 3.0.2 the length limit was approximately
8191 bytes per line.

Note that read.dcf (all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTION’
file to be read and only its ASCII fields used, or its ‘Encoding’ field used to re-encode the re-

maining fields.

write.dcf does not write NA fields.

Value

The default read.dcf (all = FALSE) returns a character matrix with one row per record and
one column per field. Leading and trailing whitespace of field values is ignored unless a field is
listed in keep.white. If a tag name is specified in the file, but the corresponding value is empty,
then an empty string is returned. If the tag name of a field is specified in £ields but never used

debug 143

in a record, then the corresponding value is NA. If fields are repeated within a record, the last one
encountered is returned. Malformed lines lead to an error.

For read.dcf (all = TRUE) a data frame is returned, again with one row per record and one
column per field. The columns are lists of character vectors for fields with multiple occurrences,
and character vectors otherwise.

Note that an empty £1ile is a valid DCF file, and read . dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

Note

As from R 3.4.0, ‘whitespace’ in all cases includes newlines.

References

https://www.debian.org/doc/debian-policy/ch—-controlfields.html.

Note that R does not require encoding in UTF-8, which is a recent Debian requirement. Nor does it
use the Debian-specific sub-format which allows comment lines starting with ‘#’.

See Also

write.table.

available.packages, which uses read.dcf to read the indices of package repositories.

Examples

Create a reduced version of the DESCRIPTION file in package 'splines'

x <—- read.dcf(file = system.file ("DESCRIPTION", package = "splines"),
fields = c("Package", "Version", "Title"))

write.dcf (x)

An online DCF file with multiple records

con <- url("https://cran.r-project.org/src/contrib/PACKAGES")
y <- read.dcf (con, all = TRUE)

close (con)

utils::str(y)

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condit ion arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once
the browser has been entered, and provide a mechanism to allow users to identify which breakpoint
has been activated.

https://www.debian.org/doc/debian-policy/ch-controlfields.html

144 debug

Usage
debug (fun, text = "", condition = NULL, signature = NULL)
debugonce (fun, text = "", condition = NULL, signature = NULL)

undebug (fun, signature = NULL)
isdebugged (fun, signature = NULL)
debuggingState (on = NULL)

Arguments
fun any interpreted R function or a character string naming one.
text a text string that can be retrieved when the browser is entered.
condition a condition that can be retrieved when the browser is entered.
signature an optional method signature. If specified, the method is debugged, rather than
its generic.
on logical; a call to the support function debuggingState returns TRUE if de-
bugging is globally turned on, FALSE otherwise. An argument of one or the
other of those values sets the state. If the debugging state is FALSE, none of
the debugging actions will occur (but explicit browser calls in functions will
continue to work).
Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step
(and the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are described in the browser help topic.

To debug a function which is defined inside another function, single-step through to the end of its
definition, and then call debug on its name.

If you want to debug a function not starting at the very beginning, use trace (..., at =) or
setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce () to enter the debugger only the next time the function is invoked.

To debug an S4 method by explicit signature, use signature. When specified, signature indicates
the method of fun to be debugged. Note that debugging is implemented slightly differently for this
case, as it uses the trace machinery, rather than the debugging bit. As such, text and condition
cannot be specified in combination with a non-null signature. For methods which implement
the . local rematching mechanism, the . local closure itself is the one that will be ultimately
debugged (see 1 sRematched).

isdebugged returns TRUE if a) signature is NULL and the closure fun has been debugged,
or b) signature is not NULL, fun is an S4 generic, and the method of fun for that signature
has been debugged. In all other cases, it returns FALSE.

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting opt ions (deparse.max.lines).

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

declare 145

Value

debug and undebug invisibly return NULL.
isdebugged returns TRUE if the function or method is

marked for debugging, and FALSE otherwise.

See Also
debugcall for conveniently debugging methods, browser notably for its ‘commands’, t race;
traceback to see the stack after an Error: ... message; recover for another debugging
approach.

Examples

Not run:
debug (library)
library (methods)

End (Not run)

Not run:

debugonce (sample)

only the first call will be debugged
sample (10, 1)

sample (10, 1)

End (Not run)

declare Declarations

Description
A framework for specifying information about R code for use by the interpreter, compiler, and code
analysis tools.

Usage

declare(...)

Arguments

declaration expressions.

Details

A syntax for declaration expressions is still being developed.

Value

Evaluating a declare () call ignores the arguments and returns NULL invisibly.

146 delayedAssign

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .De funct.

Usage

.Defunct (new, package = NULL, msq)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Defunct is called from defunct functions. These should be listed in help ("pkg—-defunct")
for an appropriate pkg, including base. The alias of the defunct function is added to the same file.

.Defunct signals an error of class "defunctError" with fields o1d, new, and package.

See Also

Deprecated.

help ("base-defunct") and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation and Promises

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)

functions.
Usage
delayedAssign (x, value, eval.env = parent.frame(l),
assign.env = parent.frame (1))
Arguments
X a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value

assign.env anenvironment in which to assign x

delayedAssign 147

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again, where the promise still keeps its expression.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise, if assign.env is not the
.GlobalEnv.

Examples

msg <- "old"

delayedAssign ("x", msgqg)

substitute (x) # shows only 'x', as it is in the global env.
msg <- "new!"

X # new!

delayedAssign ("x", {
for(i in 1:3)
cat ("yippee!\n")
10
})

x"2 #- yippee
x"2 #- simple number

ne <- new.env ()

delayedAssign ("x", pi + 2, assign.env = ne)

See the promise {without "forcing" (i.e. evaluating) it}:
substitute (x, ne) # 'pi + 2'

Promises in an environment [for advanced users]: —--————————————————————

e <- (function(x, y = 1, z) environment ()) (cos, "y", {cat(" HO!'\n"); pi+2})
How can we look at all promises in an env (w/o forcing them)?
gete <- function(e_) {

ne <- names (e_)
names (ne) <- ne
lapply (lapply (ne, as.name),
function(n) eval (substitute (substitute (X, e_), list (X=n))))
}
(exps <- gete(e))
sapply (exps, typeof)

(le <- as.list(e)) # evaluates ("force"s) the promises

148 deparse

stopifnot (identical (le, lapply(exps, eval))) # and another "Ho!"
deparse Expression Deparsing
Description

Turn unevaluated expressions into character strings.

Usage
deparse (expr, width.cutoff = 60L,
backtick = mode (expr) %in% c("call", "expression", " (", "function"),
control = c("keepNA", "keepInteger", "niceNames", "showAttributes"),
nlines = -1L)
deparsel (expr, collapse = " ", width.cutoff = 500L, ...)
Arguments
expr any R expression.

width.cutoff integer in [20,500] determining the cutoff (in bytes) at which line-breaking is

tried.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.

control character vector (or NULL) of deparsing options. control = "all" is thor-
ough, see .deparseOpts.

nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.

collapse a string, passed to paste ().

further arguments passed to deparse ().

Details

These functions turn unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode and type (typeof) "expression" used in expression)
into character strings (a kind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split across
lines.

deparsel () is a simple utility added in R 4.0.0 to ensure a string result (character vector of
length one), typically used in name construction, as deparsel (substitute(.)).

deparseOpts 149

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded
by recordP1lot is not intended to be deparsed and . Internal calls will be shown as primitive
calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput () and dump () for related functions
using identical internal deparsing functionality.

substitute, parse, expression

Quotes for quoting conventions, including backticks.

Examples

require (stats); require (graphics)

deparse (args (1m))
deparse (args (1lm), width.cutoff = 500)

myplot <- function(x, y) {
plot (x, y, xlab = deparsel (substitute(x)),
ylab = deparsel (substitute(y)))

e <- quote(foo bar")
deparse (e)

deparse (e, backtick = TRUE)
e <- quote(foo bar +1)
deparse (e)

deparse (e, control = "all") # wraps it w/ quote(.)
deparseOpts Options for Expression Deparsing
Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts (control)

. .deparseOpts

150

deparseOpts

Arguments

control character vector of deparsing options.

Details

..deparseOpts is the character vector of possible deparsing options used by
.deparseOpts ().

.deparseOpts () iscalled by deparse, dput and dump to process their cont rol argument.

The control argument is a vector containing zero or more of the following strings (exactly those
in . .deparseOpts). Partial string matching is used.

"keepInteger": Either surround integer vectors by as.integer () or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA__integer_ if there are no non-NA values in the vector, unless
"S_compatible™" is set).

"quoteExpressions": Surround unevaluated expressions, but not formulas, with
quote (), so they are not evaluated when re-parsed.

"showAttributes": If the object has attributes (other than a source attribute, see
srcref), use structure () to display them as well as the object value unless the only
such attribute is names and the "niceNames" option is set. This ("showAttributes")
is the default for deparse and dput.

"useSource": Ifthe object has a source attribute (srcref), display that instead of deparsing
the object. Currently only applies to function definitions.

"warnIncomplete™: Some exotic objects such as environments, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if the deparser recognizes one
of these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

"keepNA": Integer, real and character NAs are surrounded by coercion functions where necessary
to ensure that they are parsed to the same type. Since e.g. NA_real_ can be output in R, this
is mainly used in connection with S_compatible.

"niceNames": If true, 1ists and atomic vectors with non-NA names (see names) are de-
parsed as e.g., ¢ (A = 1) instead of structure (1, names = "A"), independently of the
"showAttributes" setting.

"all": An abbreviated way to specify all of the options listed above plus "digits17". This
is the default for dump, and, without "digits17", the options used by edit (which are
fixed).

"delayPromises": Deparse promises in the form <promise: expression> rather than evaluat-
ing them. The value and the environment of the promise will not be shown and the deparsed
code cannot be sourced.

"S_compatible": Make deparsing as far as possible compatible with S and R < 2.5.0. For
compatibility with S, integer values of double vectors are deparsed with a trailing decimal
point. Backticks are not used.

"hexNumeric": Real and finite complex numbers are output in ‘"%a"’ format as binary frac-
tions (coded as hexadecimal: see sprint f) with maximal opportunity to be recorded exactly
to full precision. Complex numbers with one or both non-finite components are output as if
this option were not set.

(This relies on that format being correctly supported: known problems on Windows are
worked around as from R 3.1.2.)

deparseOpts 151

"digits1l7": Real and finite complex numbers are output using format ‘"% .17g"’ which may
give more precision than the default (but the output will depend on the platform and there
may be loss of precision when read back). Complex numbers with one or both non-finite
components are output as if this option were not set.

"exact": An abbreviated way to specify control =c("all", "hexNumeric") which is
guaranteed to be exact for numbers, see also below.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays the
object’s value, but not its attributes. The default in deparse is to display the attributes as well, but
not to use any of the other options to make the result parseable. (dump uses more default options
via control = "all", and printing of functions without sources uses c ("keepInteger",
"keepNA") to which one may add "warnIncomplete".)

Using control = "exact" (shortfor control = c("all", "hexNumeric"))comes clos-
est to making deparse () an inverse of parse () (but we have not yet seen an example where
"all", now including "digits17", would not have been as good). However, not all objects are
deparse-able even with these options, and a warning will be issued if the function recognizes that it
is being asked to do the impossible.

Only one of "hexNumeric" and "digitsl7" can be specified.

Value

An integer value corresponding to the control options selected.

Examples
stopifnot (.deparseOpts ("exact") == .deparseOpts(c("all", "hexNumeric")))
(i0Opt.all <- .deparseOpts("all")) # a four digit integer
one integer —--> vector binary bits
int2bits <- function(x, base = 2L,

ndigits 1 + floor(le-9 + log(max(x,1l), base))) {
r <- numeric(ndigits)
for (i in ndigits:1) {
r[i] <- x%%base
if (i > 1L)
x <- x%/%base
}
rev(r) # smallest bit at left
}
int2bits (iOpt.all)

What options does "all" contain ? =========
(depO.indiv <- setdiff(..deparseOpts, c("all", "exact")))
(oa <- depO.indiv[int2bits (iOpt.all) == 1])# 8 strings

stopifnot (identical (iOpt.all, .deparseOpts(oa)))

ditto for "exact" instead of "all":
(i0pt.X <- .deparseOpts ("exact"))
data.frame (opts = depO.indiv,

all = int2bits(iOpt.all),

exact= int2bits (i0Opt.X))
(0X <— depO.indiv[int2bits (iOpt.X) == 1]) # 8 strings, too
diffXall <- oa != oX

stopifnot (identical (iOpt.X, .deparseOpts (oX)),
identical (oX[diffXall], "hexNumeric"),
identical (ca[diffXall], "digitsl7"))

152 det

Deprecated Marking Objects as Deprecated

Description
When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated (new, package = NULL, msg,
old = as.character(sys.call(sys.parent())) [1L])

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
old character string specifying the function (default) or usage which is being depre-
cated.
Details

.Deprecated ("new name") is called from deprecated functions. These should be listed in
help ("pkg—deprecated") for an appropriate pkg, including base. The original help page for
a deprecated function is sometimes available at help ("old-deprecated") (note the quotes).

.Deprecated signals a warning of class "deprecatedWarning" with fields o1d, new, and
package.

See Also

Defunct

help ("base-deprecated") and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det (x, ...)
determinant (x, logarithm = TRUE, ...)

detach 153

Arguments
X numeric matrix: logical matrices are coerced to numeric.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.
optional arguments, currently unused.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithmis FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive or
negative.
Examples
(x <- matrix(1:4, ncol = 2))

unlist (determinant (x))
det (x)

det (print (cbind (1, 1:3, c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search () path of available R objects. Usually this is
either a data . frame which has been attached or a package which was attached by 1ibrary.

Usage

detach (name, pos = 2L, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments
name the object to detach. Defaults to search () [pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos index position in search () of the database to detach. When name is a num-

ber, pos = name is used.

154 detach

unload a logical value indicating whether or not to attempt to unload the names-
pace when a package is being detached. If the package has a namespace and
unload is TRUE, then detach will attempt to unload the namespace via
unloadNamespace: if the namespace is imported by another namespace or
unload is FALSE, no unloading will occur.

character.only
a logical indicating whether name can be assumed to be a character string.

force logical: should a package be detached even though other attached packages de-
pend on it?

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload = TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs); see getLoadedDLLs and 1library.dynam.unload. Further, regis-
tered S3 methods from the namespace will not be removed, and because S3 methods are not tagged
to their source on registration, it is in general not possible to safely un-register the methods asso-
ciated with a given package. If you use 1ibrary on a package whose namespace is loaded, it
attaches the exports of the already loaded namespace. So detaching and re-attaching a package may
not refresh some or all components of the package, and is inadvisable. The most reliable way to
completely detach a package is to restart R.

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Good practice

detach () without an argument removes the first item on the search path after the workspace. It
is all too easy to call it too many or too few times, or to not notice that the search path has changed
since an attach call.

Use of attach/detach is best avoided in functions (see the help for at tach) and in interactive
use and scripts it is prudent to detach by name.

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on some systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

diag 155

See Also

attach, library, search, objects, unloadNamespace, library.dynam.unload.

Examples

require (splines) # package
detach (package:splines)

or also
library(splines)

pkg <- "package:splines"

detach (pkg, character.only = TRUE)

careful: do not do this unless 'splines' is not already attached.
library(splines)
detach (2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos = 2)
{
name <- deparsel (substitute (db))
attach (db, pos = pos, name = name)
print (search () [pos])
detach (name, character.only = TRUE)

}

attach_and_detach (women, pos = 3)
diag Matrix Diagonals
Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol, names = TRUE)
diag(x) <- value

Arguments
x a matrix, vector or 1D array, or missing.
nrow, ncol optional dimensions for the result when x is not a matrix.
names (when x is a matrix) logical indicating if the resulting vector, the diagonal of x,
should inherit name s from dimnames (x) if available.
value either a single value or a vector of length equal to that of the current diagonal.

Should be of a mode which can be coerced to that of x.

156 diag

Details
diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.
2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a ‘numeric’ (complex, numeric, integer, logical, or raw) vector, either of
length at least 2 or there were further arguments. This returns a matrix with the given diagonal
and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

Value

If x is a matrix then diag (x) returns the diagonal of x. The resulting vector will have names if
names is true and if the matrix x has matching column and rownames.
The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer (x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note
Using diag (x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length (x)) for consistent behaviour.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples
dim(diag(3))
diag (10, 3, 4) # guess what?
all(diag(l:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

other "numeric"-like diagonal matrices

diag(c(1li,21)) # complex
diag (TRUE, 3) # logical
diag(as.raw(l:3)) # raw

(D2 <- diag(2:1, 4)); typeof(D2) # "integer"

require (stats)

diff 157

diag(<var—-cov-matrix>) = variances
diag(var(M <- cbind(X = 1:5, Y = rnorm(5))))
#-> vector with names "X" and "Y"
rownames (M) <- c(colnames (M), rep("", 3))

M; diag(M) # named as well

diag (M, names = FALSE) # w/o names

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences =1, ...)

S3 method for class 'POSIXt'
diff(x, lag = 1, differences =1, ...)

S3 method for class 'Date'

diff(x, lag = 1, differences =1, ...)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

Value

If x is a vector of length n and differences = 1, then the computed result is equal to the
successive differences x [(1+1lag) :n] —x[1: (n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

158 difftime

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(l1:10, 2, 2)

x <— cumsum (cumsum(1:10))
diff(x, lag = 2)

diff (x, differences = 2)

diff (.leap.seconds)

allows to pass units via ... to difftime()
diff(.leap.seconds, units = "weeks")

diff (as.Date(.leap.seconds), units = "weeks")

difftime Time Intervals / Differences

Description

Time intervals creation, printing, and some arithmetic. The print () method calls these “time
differences”.

Usage
timel - time2
difftime(timel, time2, tz,
units = c("auto", "secs", "mins", "hours",
"daysll, "weeks"))

as.difftime(tim, format = "%X", units = "auto", tz = "UTC")

S3 method for class 'difftime'

format (x, ..., with.units = TRUE)
S3 method for class 'difftime'
units (x)

S3 replacement method for class 'difftime'
units (x) <- value

S3 method for class 'difftime'
as.double (x, units = "auto", ...)

Group methods, notably for round(), signif(), floor(),

ceiling (), trunc(), abs(); called directly, =*not* as Math():
S3 method for class 'difftime'

Math (x, ...)

difftime 159

Arguments

timel, time2 date-time or date objects.

tz an optional time zone specification to be used for the conversion, mainly for
"POSIX1t" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of t im: see st rpt ime. The default is a locale-

specific time format.
x an object inheriting from class "difftime".
arguments to be passed to or from other methods.

with.units (for the format () method:) logical indicating the units should be part, e.g.,
"3.5 hours"; if false, the units are suppressed.

Details

Function difftime calculates a difference of two date/time objects, t imel (end) and t ime2
(beginning), and returns an object of class "difftime" with an attribute indicating the units.
The Math group method provides round, signif, floor, ceiling, trunc, abs, and sign
methods for objects of this class, and there are methods for the group-generic (see Ops) logical and
arithmetic operations.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with units
= "auto". Alternatively, as.difftime () works on character-coded or numeric time intervals;
in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and
multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by
a "difftime" object implicitly converts the numeric vector to a "difftime" object with the
same units as the "difftime" object. There are methods for mean and sum (via the Summary
group generic), and diff via diff.default building on the "difftime" method for arith-
metic, notably —.

The units of a "difftime" object can be extracted by the units function, which also has a
replacement form. If the units are changed, the numerical value is scaled accordingly. The replace-
ment version keeps attributes such as names and dimensions.

Note that units = "days" means a period of 24 hours, hence takes no account of Daylight Sav-
ings Time. Differences in objects of class "Date" are computed as if in the UTC time zone.

The as . double method returns the numeric value expressed in the specified units. Using units
= "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

Warning

Because R follows POSIX (and almost all computer clocks) in ignoring leap seconds, so do time
differences. So in a UTC time zone

z <—- as.P0OSIXct(c("2016-12-31 23:59:59", "2017-01-01 00:00:01"))
z[2] - z[1]

160 dim

reports ‘Time difference of 2 secs’ but 3 seconds elapsed while the computer clock ad-
vanced by 2 seconds.

If you want the elapsed time interval, you need to add in any leap seconds for yourself.

Note

Units such as "months" are not possible as they are not of constant length. To create intervals of
months, quarters or years use seq.Date or seq.POSIXt.

See Also

DateTimeClasses.

Examples

(z <= Sys.time() - 3600)
Sys.time () - z # just over 3600 seconds.

time interval between release days of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate (2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format = "$H:%M") # 3rd gives NA
(z <— as.difftime(c(0,30,60), units = "mins"))

as.numeric(z, units = "secs")

as.numeric(z, units = "hours")

format (z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim (x)
dim(x) <- value

Arguments
X an R object, for example a matrix, array or data frame.
value for the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).
Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data . f rames, which returns the lengths of the row . names attribute of x
and of x (as the numbers of rows and columns respectively).

dimnames 161

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <= 1:12 ; dim(x) <= c(3,14)
X

simple versions of nrow and ncol could be defined as follows
nrow(0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames (x) <- value

provideDimnames (x, sep = "", base = 1list (LETTERS), unique = TRUE)
Arguments
x an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x) : see the “Value’ section.
sep a character string, used to separate base symbols and digits in the constructed
dimnames.
base a non-empty 1ist of character vectors. The list components are used in turn

(and recycled when needed) to construct replacements for empty dimnames
components. See also the examples.

unique logical indicating that the dimnames constructed are unique within each dimen-
sion in the sense of make .unique.

162 dimnames

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a mat rix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL, and a zero-length list to NULL. If value is a list shorter than the number of dimensions, it
is extended with NULLs to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.
Both are primitive functions.

provideDimnames (x) provides dimnames where “missing”, such that its result has
character dimnames for each component. If unique is true as by default, they are unique
within each component via make .unique (*, sep=sep).

Value

The dimnames of a matrix or array can be NULL (which is not stored) or a list of the same length as
dim (x). If alist, its components are either NULL or a character vector with positive length of the
appropriate dimension of x. The list can have names. It is possible that all components are NULL:
such dimnames may get converted to NULL.

For the "data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

provideDimnames (x) returns x, with “NULL - free” dimnames, i.e. each component a char-
acter vector of correct length.

Note

Setting components of the dimnames, e.g., dimnames (A) [[1]] <-value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array,matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows

rownames(0 <- function (x) dimnames (x)
colnames0 <- function(x) dimnames (x)

do.call 163

(dn <- dimnames (A <- provideDimnames (N <- array(l:24, dim = 2:4))))
A0 <- A; dimnames (A) [2:3] <- 1list (NULL)

stopifnot (identical (A0, provideDimnames (A)))

strd <- function(x) utils::str (dimnames (x))

strd(provideDimnames (A, base= list (letters[-(1:9)], tail(LETTERS))))

strd (provideDimnames (N, base= list(letters[-(1:9)], tail (LETTERS)))) # recycling
strd(provideDimnames (A, base= list (c("AA","BB")))) # recycling on both levels
set "empty dimnames":
provideDimnames (rbind (1, 2:3), base = list(""), unique=FALSE)
do.call Execute a Function Call
Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage
do.call (what, args, quote = FALSE, envir = parent.frame())
Arguments
what either a function or a non-empty character string naming the function to be
called.
args a list of arguments to the function call. The names attribute of args gives the
argument names.
quote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.
Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not
in envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such as subst itute, will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

Warning

This should not be used to attempt to evade restrictions on the use of . Internal and other non-
API calls.

164

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call ("complex", list (imaginary = 1:3))
if we already have a list

we need c{()

(e.qg.,
to add further arguments

dontCheck

Wadsworth &

a data frame)

tmp <- expand.grid(letters([1:2], 1:3, c("+", "-"))

do.call ("paste", c(tmp, sep = ""))

do.call (paste, list (as.name("A"), as.name("B")), quote = TRUE)

examples of where objects will be found.

A <= 2

f <- function(x) print (x"2)

env <- new.env ()

assign("A", 10, envir = env)

assign("f", £, envir = env)

f <- function(x) print (x)

f(A) # 2

do.call("f", list(A)) # 2

do.call("f", list(A), envir = env) # 4

do.call(£, 1list(A), envir = env) # 2

do.call("f", list(quote(A)), envir = env) # 100

do.call(f, 1list(quote(A)), envir = env) # 10

do.call("f", list(as.name("A")), envir = env) # 100

eval (call("f", A)) # 2

eval (call("f", quote(A))) # 2

eval (call("f", A), envir = env) # 4

eval (call("f", quote(A)), envir = env) # 100

dontCheck Identity Function to Suppress Checking

Description

The dontCheck function is the same as identity, but is interpreted by R CMD check

code analysis as a directive to suppress checking of x.

Currently this is only used by

checkFF (registration = TRUE) when checking the .NAME argument of foreign function

calls.

Usage

dontCheck (x)

dots 165

Arguments

x an R object.

See Also

suppressForeignCheck which explains why that and dontCheck are undesirable and
should be avoided if at all possible.

dots ..., . .1, etc used in Functions

Description

...and . .1, ..2 etcare used to refer to arguments passed down from a calling function. These
(and the following) can only be used inside a function which has . . . among its formal arguments.

...elt (n) is a functional way to get . .n and basically the same as eval (pasteO ("..",
n)), just more elegant and efficient. Note that switch(n, ...) is very close, differing by
returning NULL invisibly instead of an error when n is zero or too large.

...length () returns the number of expressions in . . ., and . . .names () the names. These
are the same as length (list (...)) or names (list (...)) but without evaluating the
expressions in . . . (which happens with 1ist (...)).

Evaluating elements of ... with ..1, ..2, ...elt (n), etc. propagates visibility. This is

consistent with the evaluation of named arguments which also propagates visibility.

Usage
...length ()
...nhames ()
...elt (n)
Arguments
n a positive integer, not larger than the number of expressions in ..., which is the
same as . . .length () whichis the same as length (1ist (...)), butthe
latter evaluates all expressionsin
See Also

.and . .1, ..2 are reserved words in R, see Reserved.

For more, see the ‘Introduction to R’ manual for usage of these syntactic elements, and dotsMethods
for their use in formal (S4) methods.

Examples

tst <- function(n, ...) ...elt(n)

tst(l, pi=pix0:1, 2:4) ## [1] 0.000000 3.141593

tst (2, pi=pix0:1, 2:4) ## [1] 2 3 4

try(tst(l)) # -> Error about '...' not containing an element.

tst.dl <- function(x, ...) ...length()
tst.dns <- function(x, ...) ...names/()

166 double

tst.dl(1:10) # 0 (because the first argument is 'x')
tst.dl (4, 5) # 1
tst.dl(4, 5, 6) # 2 namely '5, 6'
tst.dl(4, 5, 6, 7, sin(1:10), "foo"/"bar") # 5. Note: no evaluation!
tst.dns (4, foo=5, 6, bar=7, sini = sin(1:10), "foo"/"bar")
"foo" "" "bar" "sini" "
From R 4.1.0 to 4.1.2, ...names() sometimes did not match names (list(...));
check and show (these examples all would've failed):
chk.n2 <- function(...) stopifnot (identical (print(...names()), names (list(...))))
chk.n2 (4, foo=5, 6, bar=7, sini = sin(1:10), "bar")
chk.n2 ()
chk.n2(1,2)
double Double-Precision Vectors
Description

Create, coerce to or test for a double-precision vector.

Usage

double (length
as.double(x, ...)
is.double (x)

Il
o

single (length = 0)
as.single(x, ...)
Arguments
length a non-negative integer specifying the desired length. Double values will be co-
erced to integer: supplying an argument of length other than one is an error.
x object to be coerced or tested.
further arguments passed to or from other methods.
Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric.

as.double is a generic function. It is identical to as.numeric. Methods should return an
object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as . single and single are identical to as . double and double except they set the
attribute Csingle that is used in the .C and .Fortran interface, and they are intended only to
be used in that context.

double 167

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with 0x or 0X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity", irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 1073%8 to 2 x 103%®, It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).
There are also denormal(ized) (or subnormal) numbers with values below the range given above but
represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/IEC60559:2011 this is called ‘binary64’ format.

Note on names
It is a historical anomaly that R has two names for its floating-point vectors, double and numeric
(and formerly had real).

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

https://en.wikipedia.org/wiki/IEEE_754-1985, https://en.wikipedia.
org/wiki/IEEE_754-2008, https://en.wikipedia.org/wiki/IEEE_
754-2019, https://en.wikipedia.org/wiki/Double_precision, https:
//en.wikipedia.org/wiki/Denormal_number.

See Also

integer, numeric, storage.mode.

Examples

is.double (1)
all (double(3) == 0)

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/Double_precision
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

168 dput

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file, the R console, or a connection, or uses
one to recreate the object.
Usage

dput (x, file = "",
control = c("keepNA", "keepInteger", "niceNames", "showAttributes"))

dget (file, keep.source = FALSE)

Arguments
x an object.
file either a character string naming a file or a connection. " " indicates output to the
console.
control character vector (or NULL) of deparsing options. control = "all" is thor-

ough, see .deparseOpts.

keep.source logical: should the source formatting be retained when parsing functions, if
possible?

Details

dput opens £ile and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput ()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump),
not likely to be parsed as identical to the original. Use control = "all™" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource" in
control. R currently saves source only for function definitions. If you do not care about source
representation (e.g., for a data object), for speed set options (keep.source = FALSE) when
calling source.

Value

For dput, the first argument invisibly.

For dget, the object created.

dput 169

Note

This is not a good way to transfer objects between R sessions. dump is better, but the functions
save and saveRDS are designed to be used for transporting R data, and will work with R objects
that dput does not handle correctly as well as being much faster.

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, .deparseOpts, dump, write.

Examples

fil <- tempfile()

Write an ASCII version of the 'base' function mean() to our temp file,
dput (base::mean, fil)

... read it back into 'bar' and confirm it is the same

bar <- dget (fil)

stopifnot (all.equal (bar, base::mean, check.environment = FALSE))

Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it

dput (baz)
and now display the saved source
dput (baz, control = "useSource")

Numeric values:
xXx <= pi~(1:3)

dput (xx)

dput (xx, control = "digitsl7")

dput (xx, control = "hexNumeric")

dput (xx, fil); dget (fil) - xx # slight rounding on all platforms
dput (xx, fil, control = "digitsl7")

dget (fil) - xx # slight rounding on some platforms

dput (xx, fil, control = "hexNumeric"); dget (fil) - xx

unlink (£il)

xn <- setNames (xx, pastel ("pi”",1:3))

dput (xn) # nicer, now "niceNames" being part of default 'control'
dput (xn, control = "S_compat") # no names

explicitly asking for output as in R < 3.5.0:

dput (xn, control = c("keepNA", "keepInteger", "showAttributes"))

170 drop

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop (x)

Arguments

X an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any).
However, if the result is a vector of length one, then it does not get names unless exactly one
component of the dimnames is non-NULL, in which case that component is used.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it is
useful to invoke drop directly.

See Also

dropl which is used for dropping terms in models, and droplevels used for dropping unused
levels from a factor.

Examples
dim(drop (array(1:12, dim = c¢(1,3,1,1,2,1,2)))) # =3 2 2
drop(1l:3 %x% 2:4) # scalar product - w/o drop(.), would return 1xl matrix

Behavior when result is length-1 vector:

(x <= x1 <= x2 <- array(0, c(lL, 1L), list("a", "b")))
colnames (x1) <- rownames (x2) <- NULL

names (drop(x)) # NULL

names (drop(x1)) # "a"

names (drop (x2)) # "b"

droplevels 171

droplevels Drop Unused Levels from Factors

Description

The function droplevels is used to drop unused levels from a factor or, more commonly,
from factors in a data frame.

Usage

droplevels(x, ...)

S3 method for class 'factor'

droplevels (x, exclude = if (anyNA(levels(x))) NULL else NA, ...)
S3 method for class 'data.frame'

droplevels (x, except, exclude, ...)

Arguments

X an object from which to drop unused factor levels.

exclude passed to factor (); factor levels which should be excluded from the result
even if present. Note that this was implicitly NA in R <= 3.3.1 which did drop
NA levels even when present in x, contrary to the documentation. The current
default is compatible with x [, drop=TRUE].

further arguments passed to methods.

except indices of columns from which not to drop levels.

Details

The method for class "factor" is currently equivalent to factor (x, exclude=exclude).
For the data frame method, you should rarely specify exclude “globally” for all factor columns;
rather the default uses the same factor-specific exclude as the factor method itself.

The except argument follows the usual indexing rules.

Value

droplevels returns an object of the same class as x

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array
dimensions. drop1l for dropping terms from a model. [.factor for subsetting of factors.

172 dump

Examples

aq <- transform(airquality, Month = factor (Month, labels = month.abb[5:9]))
ag <- subset (ag, Month != "Jul")

table (ag $Month)

table (droplevels (ag) SMonth)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R session.

Usage
dump (1ist, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character vector (or NULL). The names of R objects to be dumped.
file either a character string naming a file or a connection. " " indicates output to the
console.
append if TRUE and file is a character string, output will be appended to £i1e; oth-
erwise, it will overwrite the contents of file.
control character vector (or NULL) indicating deparsing options. See .deparseOpts
for their description.
envir the environment to search for objects.
evaluate logical. Should promises be evaluated?
Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileisa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the functions save and
saveRDS are designed to be used for transporting R data, and will work with R objects that dump
does not handle. For maximal reproducibility use control = "exact".

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See .deparseOpts for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c ("keepInteger", "warnIncomplete", "keepNA"). This will lose all

duplicated 173

formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the de-
fault evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate
= FALSE might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base namespace, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput (), dget () and deparse () for re-
lated functions using identical internal deparsing functionality.

write,write.table, etc for “dumping” data to (text) files.

save and saveRDS for a more reliable way to save R objects.

Examples

x <-= 1; y <= 1:10
fil <- tempfile(fileext=".Rdmped")

dump (1s (pattern = "~ [xyz]'), £fil)
print (.Last.value)
unlink (£i1)
duplicated Determine Duplicate Elements
Description

duplicated () determines which elements of a vector or data frame are duplicates of elements
with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) is a “generalized” more efficient version of any (duplicated(.)),
returning positive integer indices instead of just TRUE.

174 duplicated

Usage
duplicated(x, incomparables = FALSE, ...)
Default S3 method:
duplicated(x, incomparables = FALSE,

fromLast = FALSE, nmax = NA, ...)

S3 method for class 'array'
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

anyDuplicated(x, incomparables

Default S3 method:

anyDuplicated(x, incomparables = FALSE,
fromLast = FALSE, ...)

S3 method for class 'array'

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...)

FALSE, ...)

Arguments
X a (generalized, see is.vector) vector, a data frame, an array or NULL.
incomparables
a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.
fromLast logical indicating if duplication should be considered from the reverse side, i.e.,
the last (or rightmost) of identical elements would correspond to duplicated
=FALSE.
nmax the maximum number of unique items expected (greater than one).
arguments for particular methods.
MARGIN the array margin to be held fixed: see apply, and note that MARGIN = 0 may
be useful.
Details

These are generic functions with methods for vectors (including lists and expressions), data frames
and arrays (including matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated (x, ...) isa “generalized” shortcut
for any (duplicated(x, ...)), in the sense that it returns the index i of the first duplicated
entry x [1] if there is one, and O otherwise. Their behaviours may be different when at least one of
duplicated and anyDuplicated has a relevant method.

duplicated (x, fromLast = TRUE) is equivalent to but faster than
rev (duplicated (rev(x))).

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast = TRUE) element (in
row-major order). This would most commonly be used to find duplicated rows (the default) or
columns (with MARGIN = 2). Note that MARGIN = O returns an array of the same dimensionality
attributes as x.

duplicated 175

Missing values ("NA") are regarded as equal, numeric and complex ones differing from NaN; char-
acter strings will be compared in a “common encoding”; for details, see match (and unique)
which use the same concept.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Except for factors, logical and raw vectors the default nmax = NA is equivalent to nmax =
length (x). Since a hash table of size 8 xnmax bytes is allocated, setting nmax suitably can
save large amounts of memory. For factors it is automatically set to the smaller of length (x)
and the number of levels plus one (for NA). If nmax is set too small there is liable to be an error:
nmax = 1 is silently ignored.

Long vectors are supported for the default method of duplicated, but may only be usable if
nmax is supplied.

Value

duplicated (): For a vector input, a logical vector of the same length as x. For a data frame,
a logical vector with one element for each row. For a matrix or array, and when MARGIN = 0, a
logical array with the same dimensions and dimnames.

anyDuplicated (): an integer or real vector of length one with value the 1-based index of the
first duplicate if any, otherwise 0.

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <= ¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

similar, same elements but different order:
(xu2 <- x['!duplicated(x, fromLast = TRUE)])

xu == unique (x) but unique (x) is more efficient
stopifnot (identical (xu, unique(x)),
identical (xu2, unique (x, fromLast = TRUE)))

which (duplicated (warpbreaks))

for 3d array, MARGIN = -1 <==> MARGIN = 2:3
duplicated(gait, MARGIN -1) # boy26 duplicates boyl9, see help(gait).
anyDuplicated (warpbreaks)

anyDuplicated (x)

176

dyn.load

anyDuplicated(x, fromLast = TRUE)

dyn.load

Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)

dyn.unload (x)

is.loaded (symbol, PACKAGE = "", type = "")
Arguments
X a character string giving the pathname to a DLL, also known as a dynamic shared

local

now

symbol
PACKAGE

type

Details

object. (See ‘Details’ for what these terms mean.)

a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

a logical controlling whether all symbols are resolved (and relocated) immedi-
ately when the library is loaded or deferred until they are used. This control is
useful for developers testing whether a library is complete and has all the nec-
essary symbols, and for users to ignore missing symbols. Whether this has any
effect is system-dependent.

other arguments for future expansion.
a character string giving a symbol name.

if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, “.s1’, *.d11’,...). This is intended
to add safety for packages, which can ensure by using this argument that no
other package can override their external symbols. This is used in the same way
asinthe .C, .Call, .Fortran and .External functions.

the type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’)
on all platforms except macOS, which uses the term for a different sort of object. On Unix-alikes
they are also called ‘dynamic shared objects’ (‘DSQO’), or ‘shared objects’ for short. (The POSIX
standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for
how to create and install a suitable DLL.

Unfortunately some rare platforms (e.g., Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

dyn.load 177

The additional arguments to dyn . load mirror the different aspects of the mode argument to the
dlopen () routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own namespace is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of one potential side-effect of using lazy loading via now = FALSE: if a
routine is called that has a missing symbol, the process will terminate immediately. The intended
use is for library developers to call this with value TRUE to check that all symbols are actually
resolved and for regular users to call it with FALSE so that missing symbols can be ignored and the
available ones can be called.

The initial motivation for adding these was to avoid such termination in the _init () routines of
the Java virtual machine library. However, symbols loaded locally may not be (read: probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the opt ions function.

There is a short discussion of these additional arguments with some example code available at
https://www.stat.ucdavis.edu/~duncan/R/dynload/.

Value

The function dyn . load is used for its side effect which links the specified DLL to the executing
R image. Callsto .C, .Call, .Fortran and .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See get LoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a
DLL of the same name may or may not work: on Solaris it used the first version loaded. Note also
that some DLLs cannot be safely unloaded at all: unloading a DLL which implements C finalizers
but does not unregister them on unload causes R to crash.

is.loaded checks if the symbol name is loaded and searchable and hence available for use as
a character string value for argument . NAME in .C, .Fortran, .Call, or .External. It will
succeed if any one of the four calling functions would succeed in using the entry point unless t ype
is specified. (See .Fortran for how Fortran symbols are mapped.) Note that symbols in base
packages are not searchable, and other packages can be so marked.

Warning
Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc. It must be a character string and so
cannot be an R object as used for registered native symbols (see “Writing R Extensions” section

https://www.stat.ucdavis.edu/~duncan/R/dynload/

178 eapply

5.4.). Some registered symbols are available by name but most are not, including those in the
examples below.

By default, the maximum number of DLLs that can be loaded is now 614 when the OS limit on the
number of open files allows or can be increased, but less otherwise (but it will be at least 100). A
specific maximum can be requested via the environment variable R_MAX_NUM_DLLS, which has to
be set (to a value between 100 and 1000 inclusive) before starting an R session. If the OS limit on the
number of open files does not allow using this maximum and cannot be increased, R will fail to start
with an error. The maximum is not allowed to be greater than 60% of the OS limit on the number
of open files (essentially unlimited on Windows, on Unix typically 1024, but 256 on macOS). The
limit can sometimes (including on macOS) be modified using command ulimit —n (sh, bash)
or limit descriptors (csh) in the shell used to launch R. Increasing R_MAX_NUM_DLLS
comes with some memory overhead, and be aware that many types of connections also use file
descriptors.

If the OS limit on the number of open files cannot be determined, the DLL limit is 100 and cannot
be changed via R_MAX_NUM_DLLS.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn . load uses
the d1lopen mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s . onLoad initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

expect all of these to be false in R >= 3.0.0 as these can only be
used via registered symbols.

is.loaded("supsmu") # Fortran entry point in stats
is.loaded ("supsmu", "stats", "Fortran")
is.loaded ("PDF", type = "External") # pdf() device in grDevices
eapply Apply a Function Over Values in an Environment
Description

eapply applies FUN to the named values from an environment and returns the results as a list.
The user can request that all named objects are used (normally names that begin with a dot are not).
The output is not sorted and no enclosing environments are searched.

eigen 179

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments
env environment to be used.
FUN the function to be applied, found via match. fun. In the case of functions like
+, $*%, etc., the function name must be backquoted or quoted.
optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values.
USE.NAMES logical indicating whether the resulting list should have names.
Value

A named (unless USE .NAMES = FALSE) list. Note that the order of the components is arbitrary
for hashed environments.

See Also

environment, lapply.

Examples

require (stats)

env <- new.env (hash = FALSE) # so the order is fixed
env$a <- 1:10

envs$beta <- exp(-3:3)

env$logic <- ¢ (TRUE, FALSE, FALSE, TRUE)

what have we there?

utils::1ls.str (env)

compute the mean for each list element
eapply (env, mean)
unlist (eapply (env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply (env, quantile, probs = 1:3/4)
eapply (env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of numeric (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

180 eigen
Arguments
X a numeric or complex matrix whose spectral decomposition is to be computed.
Logical matrices are coerced to numeric.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and

only its lower triangle (diagonal included) is used. If symmet ric is not speci-
fied, isSymmetric (x) is used.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Defunct and ignored.

Details

If symmetric is unspecified, isSymmetric (x) determines if the matrix is symmetric up to
plausible numerical inaccuracies. It is surer and typically much faster to set the value yourself.

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code (most often 1): these can only be interpreted by detailed study of the FORTRAN code.

Missing, NaN or infinite values in x will given an error.

Value

The spectral decomposition of x is returned as a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod (values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE. The vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

When only.values is not true, as by default, the result is of S3 class "eigen™".

If r <-eigen(A),and V <- r$vectors; lam <- r$values, then
A=VAV~!

(up to numerical fuzz), where A =diag (lam).

Source

eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV.
LAPACK is from https://netlib.org/lapack/ and its guide is listed in the references.

https://netlib.org/lapack/

encodeString 181

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

See Also

svd, a generalization of eigen; gr, and chol for related decompositions.

To compute the determinant of a matrix, the gr decomposition is much more efficient: det.

Examples

eigen (cbind(c(1,-1), c(-1,1)))
eigen (cbind(c(1,-1), c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(l, c(1,-1)), only.values = TRUE)

eigen (cbind (- 1, 2:1)) # complex values

eigen (print (cbind(c (0, 11i), c(-11i, 0)))) # Hermite ==> real Eigenvalues
3 x 3:

eigen(cbind(1, 3:1, 1:3))
eigen(cbind (-1, c(1:2,0), 0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default
does, and optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = 0, quote = "", na.encode = TRUE,
justify = c("left", "right", "centre", "none"))
Arguments
X a character vector, or an object that can be coerced to one by as .character.
width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.
quote character: quoting character, if any.
na.encode logical: should NA strings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width

is needed, how should spaces be inserted? justify == "none" is equivalent
to width = 0, for consistency with format .default.

https://netlib.org/lapack/lug/lapack_lug.html

182

Details

Encoding

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\ £’ (form feed),
‘An’ (line feed, aka “newline”), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well
as any non-printable characters in a single-byte locale, which are printed in octal notation (‘\xyz’

with leading zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print .default for how

non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-

sions) but with no class set.

Marked UTF-8 encodings are preserved.

Note

The default for width is different from format .default, which does similar things for char-

acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"
print (x)
cat (x) # interprets escapes

cat (encodeString(x), "\n", sep = "") # similar to print/()

factor (x) # makes use of this to print the levels

X <— C(llall, llabll’ "abcde")

encodeString(x) # width = 0: use as little as possible

encodeString(x, 2) # use two or more (left justified)

encodeString(x, width = NA) # left justification

encodeString(x, width = NA, justify = "c")

encodeString(x, width = NA, justify = "r")

encodeString(x, width = NA, quote = "'", Jjustify = "zr")

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Encoding 183
Usage

Encoding (x)

Encoding(x) <- value

enc2native (x)
enc2utf8 (x)

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be encoded in "1atinl" or "UTF-8" or as "bytes™".
These declarations can be read by Encoding, which will return a character vector of values
"latinl", "UTF-8" "bytes" or "unknown", or set, when value is recycled as needed
and other values are silently treated as "unknown". ASCII strings will never be marked with
a declared encoding, since their representation is the same in all supported encodings. Strings
marked as "bytes" are intended to be non-ASCII strings which should be manipulated as bytes,
and never converted to a character encoding (so writing them to a text file is supported only by
writeLines (useBytes = TRUE)).

enc2native and enc2ut£8 convert elements of character vectors to the native encoding or
UTF-8 respectively, taking any marked encoding into account. They are primitive functions, de-
signed to do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly
setting it (and these have changed as R has evolved). The parser marks strings containing ‘\u’ or
‘\U’ escapes. Functions scan, read.table, readLines, and parse have an encoding
argument that is used to declare encodings, i conv declares encodings from its t o argument, and
console input in suitable locales is also declared. intToUt£8 declares its output as "UTF-8",
and output text connections (see text Connection) are marked if running in a suitable locale.
Under some circumstances (see its help page) source (encoding=) will mark encodings of
character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared on
the corresponding input. These include chartr, strsplit (useBytes = FALSE), tolower
and toupper as well as sub (useBytes = FALSE) and gsub (useBytes = FALSE) . Note
that such functions do not preserve the encoding, but if they know the input encoding and that the
string has been successfully re-encoded (to the current encoding or UTF-8), they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-
8 encoding on systems with Unicode wide characters. With their fixed and perl options,
strsplit, sub and gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprint f return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 if any of the inputs is marked as UTF-8.

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the
elements are marked as UTF-8.

Changing the current encoding from a running R session may lead to confusion (see
Sys.setlocale).

There is some ambiguity as to what is meant by a ‘Latin-1" locale, since some OSes (notably
Windows) make use of character positions undefined (or used for control characters) in the ISO

184 environment

8859-1 character set. How such characters are interpreted is system-dependent but as from R 3.5.0
they are if possible interpreted as per Windows codepage 1252 (which Microsoft calls “Windows
Latin 1 (ANSI)’) when converting to e.g. UTF-8.

Value

A character vector.

For enc2ut £8 encodings are always marked: they are for enc2native in UTF-8 and Latin-1
locales.

Examples

x 1s intended to be in latinl

X. <— X <— "fran\xE7ais"

Encoding (x.) # "unknown" (UTF-8 loc.) | "latinl" (8859-1/CP-1252 loc.) |
Encoding(x) <— "latinl"

X

xx <- iconv(x, "latinl", "UTF-8")

Encoding(c(x., x, xx))

c(x, xx)

xb <- xx; Encoding(xb) <- "bytes"
xb # will be encoded in hex

cat("x - ", %, ll, XX = ", XX, n, xb = ", Xb, "\1’1", sep = "u)
(Ex <- Encoding(c(x.,x,xx,xb)))
stopifnot (identical (Ex, c(Encoding(x.), Encoding(x),
Encoding (xx), Encoding(xb))))
environment Environment Access
Description

Get, set, test for and create environments.

Usage

environment (fun = NULL)
environment (fun) <- wvalue

is.environment (x)
.GlobalEnv
globalenv ()

.BaseNamespaceEnv

emptyenv ()
baseenv ()

new.env (hash = TRUE, parent = parent.frame(), size = 29L)

parent.env (env)
parent.env(env) <- value

environment 185

environmentName (env)

env.profile (env)

Arguments
fun a function,a formula, or NULL, which is the default.
value an environment to associate with the function.
x an arbitrary R object.
hash a logical, if TRUE the environment will use a hash table.
parent an environment to be used as the enclosure of the environment created.
env an environment.
size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.
Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclos-
ing environment is distinguished from the parent frame: the latter (returned by parent . frame)
refers to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent . env).

When get or exists search an environment with the default inherits = TRUE, they look for
the variable in the frame, then in the enclosing frame, and so on.

The global environment . GlobalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv (). On the search path, each item’s
enclosure is the next item.

The object .BaseNamespaceEnv is the namespace environment for the base package. The en-
vironment of the base package itself is available as baseenv ().

If one follows the chain of enclosures found by repeatedly calling parent . env from any envi-
ronment, eventually one reaches the empty environment emptyenv (), into which nothing may be
assigned.

The replacement function parent .env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and
globalenv are primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach (). Other environments
can be named by giving a "name" attribute, but this needs to be done with care as environments
have unusual copying semantics.

Value

If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.

186 environment

The replacement form sets the environment of the function or formula fun to the value given.
Note that primitive functions fun have no environment and trying to set it to a non-NULL value
is deprecated.

is.environment (obj) returns TRUE if and only if obj is an environment.
new.env returns a new (empty) environment with (by default) enclosure the parent frame.
parent .env returns the enclosing environment of its argument.

parent .env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or " "
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported
by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see https://en.wikipedia.org/
wiki/Hash_table.

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s. str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"

##-— all three give the same:

environment ()

environment (f)

.GlobalEnv

ls(envir = environment (stats::approxfun(l:2, 1:2, method = "const")))

is.environment (.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir = el)

1s (el)

1s (e2)

exists("a", envir = e2) # this succeeds by inheritance

exists ("a", envir = e2, inherits = FALSE)

exists("+", envir = e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)
with (env.profile(eh), stopifnot (size == length (counts)))

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

EnvVar 187

EnvVar Environment Variables

Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted
when needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Con-
sulted at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used
by the emulation mode of texi2dvi and texi2pdf.

R_BATCH: Optional — set in a batch session, that is one started by R CMD BATCH. Most often set
to " ", so test by something like ! is.na (Sys.getenv ("R_BATCH", NA)).

R_BROWSER: The path to the default browser. Used to set the default value of
options ("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
the macOS GUI)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every
session. See options.

R_DOC_DTIR: The location of the R ‘doc’ directory. Set by R.
R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and
embedFonts. Consulted when those functions are invoked. Since it will be treated as if
passed to system, spaces and shell metacharacters should be escaped.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when
the history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface.

On Unix-alikes, for the readline command-line interface it takes effect when the history
is saved (by savehistory or at the end of a session).

On Windows, for Rgui it controls the number of lines saved to the history file: the size of the
history used in the session is controlled by the console customization: see Rconsole.

R_HOME: The top-level directory of the R installation: see R.home. Set by R.
R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.
R_LIBS: Optional. Used for initial setting of . 1ibPaths.

R_LIBS_SITE: Optional. Used for initial setting of . 1ibPaths.

188 EnvVar

R_LIBS_USER: Optional. Used for initial setting of . LibPaths.

R_PAPERSIZE: Optional. Used to set the default for options ("papersize"), e.g. used by
pdf and postscript.

R_PCRE_JIT_STACK_MAXSIZE: Optional. Consulted when PCRE’s JIT pattern compiler is
first used. See grep.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2pdf.
R_PLATFORM: The platform — a string of the form "cpu-vendor-os", see R.Version.
R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2pdf.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is
unset to a value determined when R was built.
Only on Unix-alikes:
Consulted at startup to set the default for options ("texi2dvi"), used by texi2dvi
and texi2pdf in package tools.

R_TIDYCMD: The path to HTML tidy. Used by RCMDcheck if
_R_CHECK_RD_VALIDATE_RD2HTML_ is set to a true value (as itis by ‘~—as-cran’.

R_UNZIPCMD: The path to unzip. Sets the initial value for options ("unzip") on a Unix-
alike when namespace utils is loaded.

R_ZIPCMD: The path to zip. Used by zip and by R CMD INSTALL ——build on Windows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the ses-
sion: see tempdir. TMPDIR is also used by some of the utilities: see the help for build.

TZ: Optional. The current time zone. See Sys . timezone for the system-specific formats. Con-
sulted as needed.

TZDIR: Optional. The top-level directory of the time-zone database. See Sys.timezone.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download. file: see its help for further details.

Unix-specific
Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by X11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options ("editor") when names-
pace utils is loaded.

PAGER: The path to the pager with the default setting of options ("pager"). The default
value is chosen at configuration, usually as the path to less.

R_PRINTCMD: Sets the default for options ("printcmd"), which sets the default print com-
mand to be used by postscript.

R_SUPPORT_OLD_TARS logical. Sets the default for the support_old_tars argument of
untar. Should be set to TRUE if an old system tar command is used which does not
support either xz compression or automagically detecting compression type.

Windows-specific

Some Windows-specific variables are

GSC: Optional: the path to Ghostscript, used if R_GSCMD is not set.

R_USER: The user’s ‘home’ directory. Set by R. (HOME will be set to the same value if not already
set.)

eval 189

See Also

Sys.getenv and Sys . setenv to read and set environmental variables in an R session.

gctorture for environment variables controlling garbage collection.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list (envir) || is.pairlist (envir))
parent.frame () else baseenv())
evalqg (expr, envir, enclos)
eval.parent (expr, n = 1)
local (expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment, baseenv ()) or an environment.

n number of parent generations to go back.

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent . frame () (the environment
where the call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalqg form is equivalent to eval (quote (expr), ...). eval evaluates its first argu-
ment in the current scope before passing it to the evaluator: evalq avoids this.

eval .parent (expr, n) is ashorthand for eval (expr, parent.frame (n)).

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalq except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

190

Value

eval

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument to a func-
tion, the relevant enclosure is often the caller’s environment, i.e., one needs eval (x, data,
parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval (2 ~ 2 ©~ 3)
mEx <- expression(27273); mEx; 1 + eval (mEx)
eval ({ xx <- pi; xx"2}) ; xx

a <- 3 ; aa <- 4 ; evalg(evalg(atb+taa,
a <= 3 ; aa <= 4 ; evalg(evalg(atb+aa,

ev <— function() {

}

tst.ev <- function(

el <- parent.frame ()

Evaluate a in el

aa <- eval (expression(a), el)

evaluate the expression bound to
a <- expression (x+ty)

list (aa = aa, eval = eval(a, el))

=7 { x <-pi; vy

a
tst.ev () #-> aa : 7, eval : 4.14

a <- list(a = 3, b = 4)
with(a, a <= 5) # alters the copy of a

##

Example of evalqg()
##

N <- 3

env <- new.env ()

assign("N", 27, envir = env)

this version changes the visible copy of N only,

passed to eval is '4'.
eval (N <- 4, env)

list(a =1
(

)y
-1), list =

)
b

a in el
<= 1; ev() }

from the 1list,

discarded.

since the argument

exists 191

N

get ("N", envir = env)

this version does the assignment in env, and changes N only there.
evalg(N <- 5, env)

N

get ("N", envir = env)
##

Uses of local()

##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local ({
k <= function(y) f(y)
f <- function(x) 1f(x) x*xk(x-1) else 1
)
gg (10)
sapply(1:5, gg)

Nesting locals: a 1is private storage accessible to k
gg <- local ({
k <= local ({
a <- 1
function (y) {print (a <<— a+1l);f(y)}
1)
f <- function(x) if(x) xxk(x-1) else 1
})
sapply (1:5, gg)

ls (envir = environment (gg))
ls(envir = environment (get ("k", envir = environment (gg))))
exists Is an Object Defined?

Description

Look for an R object of the given name and possibly return it

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
get0(x, envir = pos.to.env(-1L), mode = "any", inherits = TRUE,
ifnotfound = NULL)
Arguments

X a variable name (given as a character string or a symbol).

192 exists

where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.

frame a frame in the calling list Equivalent to giving where as
sys.frame (frame).

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

ifnotfound the return value of get 0 (x, *) when x does not exist.

Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys . frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode = "special" will
seek any type of function.)

Value

exists () : Logical, true if and only if an object of the correct name and mode is found.

get0(): The object—as from get (x, »)— if exists(x, %) 1is true, otherwise
ifnotfound.
Note

With get 0 (), instead of the easy to read but somewhat inefficient

if (exists (myVarName, envir = myEnvir)) {
r <- get (myVarName, envir = myEnvir)
... deal with r

you now can use the more efficient (and slightly harder to read)

if (!is.null(r <- getO (myVarName, envir = myEnvir))) {
... deal with r

expand.grid 193

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get and hasName. For quite a different kind of “existence” checking, namely if function
arguments were specified, missing; and for yet a different kind, namely if a file exists,
file.exists.

Examples

Define a substitute function if necessary:

if (!exists ("some.fun", mode = "function"))

some.fun <- function(x) { cat ("some.fun (x)\n"); x }
search ()
exists("1ls", 2) # true even though 1ls is in pos = 3

exists("1ls", 2, inherits = FALSE) # false

These are true (in most circumstances):
identical(ls, get0("1s"))

identical (NULL, getO(".foo.bar.")) # default ifnotfound = NULL (!)
expand.grid Create a Data Frame from All Combinations of Factor Variables
Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

.. vectors, factors or a list containing these.

KEEP .OUT.ATTRS
a logical indicating the "out .attrs" attribute (see below) should be com-
puted and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out .attrs" is a list which gives the dimension and dimnames for use by predict
methods.

194 expression

Note

Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package ut i1s) for the generation of all combinations of n elements, taken m at a time.

Examples
require (utils)

expand.grid(height = seq(60, 80, 5), weight = seq (100, 300, 50),
sex = c("Male", "Female"))

x <— seq(0, 10, length.out = 100)

y <- seq(-1, 1, length.out = 20)

dl <- expand.grid(x = x, y = V)

d2 <- expand.grid(x = x, y =y, KEEP.OUT.ATTRS = FALSE)
object.size(dl) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode and class "expression".

Usage

expression(...)

is.expression (x)
as.expression(x, ...)

Arguments

expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.

x an arbitrary R object.

expression 195

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression" is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expressionand is.expression are primitive functions. expression is ‘special’: it does
not evaluate its arguments.

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here. (The default method calls as.vector (type =
"expression") and so may dispatch methods for as.vector.) NULL, calls, symbols (see
as.symbol) and pairlists are returned as the element of a length-one expression vector. Atomic
vectors are placed element-by-element into an expression vector (without using any names): 1ists
have their type (t ypeof) changed to an expression vector (keeping all attributes). Other types are
not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text, legend, and plotmath for plotting mathematical
expressions.

Examples
length (exl <- expression(l + 0:9)) # 1
exl

eval (ex1) # 1:10

length (ex3 <- expression(u, 2, u + 0:9)) # 3

mode (ex3 [3]) # expression

mode (ex3[[3]]) # call

but not all components are 'call's
sapply (ex3, mode) # name numeric call

sapply (ex3, typeof) # symbol double language
rm(ex3)

196

Extract

Extract

Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

x[1
X[il jl
x[[

i, exact

x[[1, 3,

drop = TRUE]

= TRUE]]

exact = TRUE]]

getElement (object, name)

1, Js

i] <- wvalue

<- value

[[1]] <- value

xSname <- value

Arguments
%, object

i, 9, ...

name

drop

exact

value

object from which to extract element(s) or in which to replace element(s).

indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer or whole numbers as by as. integer or for large values by t runc
(and hence truncated towards zero). Character vectors will be matched to the
names of the object (or for matrices/arrays, the dimnames): see ‘Character
indices’ below for further details.

For [-indexing only: i, Jj, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating el-

ements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of i.

An index value of NULL is treated as if it were integer (0).

a literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

relevant for matrices and arrays. If TRUE the result is coerced to the lowest
possible dimension (see the examples). This only works for extracting elements,
not for the replacement. See drop for further details.

controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

typically an array-like R object of a similar class as x.

Extract 197

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [. data.frameand [. factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<-,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

Note that x [[]] is always erroneous.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects (and NULL), and
is only discussed in the section below on recursive objects.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed
to accept the values. For vectors, the answer will be of the higher of the types of x and value in
the hierarchy raw < logical < integer < double < complex < character < list < expression. Attributes
are preserved (although names, dim and dimnames will be adjusted suitably). Subassignment is
done sequentially, so if an index is specified more than once the latest assigned value for an index
will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g., a function).

Atomic vectors

The usual form of indexing is [. [[can be used to select a single element dropping names,
whereas [keeps them, e.g.,in ¢ (abc =123) [1].

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character (i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. And again, indexing
by factors is equivalent to indexing by the numeric codes, see ‘Atomic vectors’ above.

An empty index (a comma separated blank) indicates that all entries in that dimension are selected.
The argument drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single

198 Extract

element of the array. Indices are matched against the appropriate dimension names. N2 is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string (" ") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. x$name is equivalentto x [["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

getElement (x, name) is a version of x[[name, exact = TRUE]] which for formally
classed (S4) objects returns slot (x, name), hence providing access to even more general list-
like objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
(such as calls) are coerced to lists for extraction by [, but all three operators can be used for re-
placement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] isequivalentto alist[[1i1]]...[[ip]] providing all but the final indexing
results in a list.

Attempts to extract a non-existent element by name return NULL.

Note that in all three kinds of replacement, a value of NULL deletes the corresponding item of the
list. To set entries to NULL, youneed x [1] <— 1ist (NULL).

When $<- is applied to a NULL x, it first coerces x to 1ist (). This is what also happens with
[[<— where in R versions before 4.0.0, a length one value resulted in a length one (atomic) vector.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no partial
matching is done. The semantics of these operations are those of get (i, env = x, inherits
= FALSE) . If no match is found then NULL is returned. The replacement versions, $<—and [[<-,
can also be used. Again, only character arguments are allowed. The semantics in this case are
those of assign (i, value, env = x, inherits = FALSE). Such an assignment will either
create a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.)

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome). (The documented behaviour of S was that an NA replacement index ‘goes nowhere’
but uses up an element of value: Becker et al. p. 359. However, that has not been true of other
implementations.)

Extract 199

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j =2, i =1] is equivalenttom([2, 1]
andnottom[1, 2].

This may not be true for methods defined for them; for example it is not true for the data. frame
methods described in [.data.frame which warn if i or j is named and have undocumented
behaviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods
These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names
or dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et
al. p. 358), R never uses partial matching when extracting by [, and partial matching is not by
default used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options (warnPartialMatchDollar = TRUE).

Neither empty (" ") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

Error conditions

Attempting to apply a subsetting operation to objects for which this is not possible signals an error
of class notSubsettableError. The object component of the error condition contains the
non-subsettable object.

Subscript out of bounds errors are signaled as errors of class subscriptOutOfBoundsError.
The object component of the error condition contains the object being subsetted. The integer
subscript component is zero for vector subscripting, and for multiple subscripts indicates which
subscript was out of bounds. The index component contains the erroneous index.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmat ch for partial matching.
list,array,matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.
Syntax for operator precedence, and the ‘R Language Definition’ manual about indexing details.

NULL for details of indexing null objects.

200

Examples

x <= 1:12

m <- matrix(l:6, nrow

1li <= list(pi = pi, e =

x[10] #

X <— x[-1] #

] #
#
#
#

’

, ,» drop = FALSE]

c (TRUE, FALSE, TRUE)]
m[cbind(c(1,2,1),3:1)]
ci <= cbind(c("a", "b",

m[1l
m[1l
m[,

2, dimnames = list(c("a", "b"),

exp (1))

the tenth element of x
delete the 1lst element of x
the first row of matrix m
is a l-row matrix

logical indexing

matrix numeric index

"a"), c(("a", "c", "B"))

Extract.data.frame

LETTERS[1:31]))

ml[ci] # matrix character index

m <— m[,-1] # delete the first column of m

1i[[1]] # the first element of list 1i

y <-— list(1, 2, a = 4, 5)

yvlc(3, 4)] # a list containing elements 3 and 4 of y
yS$a # the element of y named a

non-integer indices
(i <= 3.999999999) # "4
(1:5) [1]1 # 3

named atomic vectors
nx <— c(Abc = 123, pi =
nx[1l] ; nx["pi"] # keep
nx[[1]] ; nx[["pi"]]

recursive indexing i

are truncated:
" is printed

, compare "[" and "[["
pi)
s names, whereas "[[" does not:

nto lists

z <—= list(a = list(b = 9, ¢ = "hello"), d = 1:5)
unlist (z)

z[[c(l, 2)]1]

z[[c(1l, 2, 1)11] # both "hello"
z[[c("a", "b")]] <= "new"

unlist (z)

check $ and [[for environments
el <- new.env()

el$Sa <- 10

el[["a"]]

el[["b"]] <= 20

els$b

1s (el)

partial matching - possibly with warning
stopifnot (identical (1i$p, pi))
op <- options(warnPartialMatchDollar = TRUE)

stopifnot (identical (1i
inherits (tryCatch (11

options (op)

Sp, pi), #-- a warning

$p, warning = identity), "warning"))
revert the warning option:

Extract.data.frame Extract or Replace Parts of a Data Frame

Extract.data.frame 201

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame'

x[i, j, drop =]

S3 replacement method for class 'data.frame'
x[1i, J] <= value

S3 method for class 'data.frame'

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame'
x[[1, J11 <= value

S3 replacement method for class 'data.frame'
x$name <- value

Arguments

X data frame.

i,3, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty or logical. Numeric values are coerced
to integer as if by as.integer. For replacement by [, a logical matrix is
allowed.

name a literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value a suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single vector index
(x[1] orx[[1]1),they index the data frame as if it were a list. In this usage a drop argument is
ignored, with a warning.

There is no data. frame method for $, so x$Sname uses the default method which treats x as a
list (with partial matching of column names if the match is unique, see Ext ract). The replacement
method (for $) checks value for the correct number of rows, and replicates it if necessary.

When [and [[are used with two indices (x[1, j] and x[[1, j]1) they act like indexing
a matrix: [[can only be used to select one element. Note that for each selected column, x7j
say, typically (if it is not matrix-like), the resulting column will be xj [1i], and hence rely on the
corresponding [method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make.unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g., if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

202 Extract.data.frame

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x [1] with a logical or a 2-column integer matrix i) using [is not recommended.
For extraction, x is first coerced to a matrix. For replacement, logical matrix indices must be of the
same dimension as x. Replacements are done one column at a time, with multiple type coercions
possibly taking place.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will if exact = FALSE (and with a warning if exact = NA). If you want
to exact matching on row names use mat ch, as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a vector results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a *missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

Coercion
The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data. frame and as.data.frame do) but inserted as a single column.

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and
the behaviour differs from the description here.

Extract.data.frame 203

See Also

subset which is often easier for extraction, data . frame, Extract.

Examples
sw <— swiss[1l:5, 1:4] # select a manageable subset
sw[l:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
sw[l] # a one—-column data frame
sw[, 1, drop = FALSE] # the same
swl, 1] # a (unnamed) vector
swl[1]] # the same
sw$Fert # the same (possibly w/ warning, see ?Extract)
swll,] # a one-row data frame

sw[l,, drop = TRUE] # a list

sw["C",] # partially matches
swmatch ("C", row.names(sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

swlsw$Fertility > 90,] # logical indexing, see also ?subset
swlc(l, 1:2), 1] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column

sw["newl"] <— LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1l:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

swénewd <- 1:5

sapply (sw, class)

sw$new # —-> NULL: no unique partial match
swSnewd <- NULL # delete the column
sw

sw[6:8] <- list(letters[10:14], NULL, aa = 1:5)
update col. 6, delete 7, append

sw

matrices in a data frame
A <- data.frame(x = 1:3, y = I(matrix(4:9, 3, 2)),
z = I(matrix (letters[1:9], 3, 3)))

A[l:3, "y"] # a matrix
A[l:3, "z"] # a matrix
Al, "y"] # a matrix
stopifnot (identical (colnames (A), c("x", "y", "z")), ncol(A) == 3L,

identical (A[,"y"]1, A[1l:3, "y"1),
inherits (A[,"y"], "AsIs"))

keeping special attributes: use a class with a
"as.data.frame" and "[" method;
"avector" := vector that keeps attributes. Could provide a constructor

204 Extract.factor

avector <- function(x) { class(x) <- c("avector", class(x)); x }
as.data.frame.avector <- as.data.frame.vector

“[.avector® <- function(x,i,...) {
r <- NextMethod("[")
mostattributes (r) <- attributes (x)
r

d <- data.frame(i = 0:7, £ = gl(2,4),
u = structure(11:18, unit = "kg", class = "avector"))
|

str(d[2:4, -1]) # 'u' keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class 'factor'

x[..., drop = FALSE]

S3 method for class 'factor'

x[[...]]

S3 replacement method for class 'factor'
x[...] <= value

S3 replacement method for class 'factor'
x[[...]] <= wvalue

Arguments

X a factor.

a specification of indices — see Extract.

drop logical. If true, unused levels are dropped.
value character: a set of levels. Factor values are coerced to character.
Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If value isnotin levels (x), a missing value is assigned with a warning.
Any contrasts assigned to the factor are preserved unless drop = TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop = TRUE.

Extremes 205

See Also

factor, Extract.

Examples

following example (factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
ff[, drop = TRUE]

factor (letters[7:10]) [2:3, drop = TRUE]

Extremes Maxima and Minima

Description

Returns the (regular or parallel) maxima and minima of the input values.

pmaxx () and pminx () take one or more vectors as arguments, recycle them to common length
and return a single vector giving the ‘parallel’ maxima (or minima) of the argument vectors.

Usage
maxXx(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax (..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

pmax.int (..., na.rm = FALSE)
pmin.int (..., na.rm = FALSE)
Arguments

numeric or character arguments (see Note).

na.rm a logical (TRUE or FALSE) indicating whether missing values should be re-
moved.

Details

max and min return the maximum or minimum of all the values present in their arguments, as
integerifallare logical or integer, as double if all are numeric, and character otherwise.

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and —Inf (in this order!) which
ensures transitivity, e.g., min (x1, min (x2)) ==min (x1, x2). For numeric x max (x) ==
—Inf and min (x) == +Inf whenever length (x) == 0 (after removing missing values if re-
quested). However, pmax and pmin return NA if all the parallel elements are NA even for na . rm
= TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘paralle]’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is

206 Extremes

the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes: such as names or dim)
are copied from the first argument (if applicable, e.g., not for an S4 object).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments . . . should be unnamed, and
dispatch is on the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf) ==
NA even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA. (One could argue that as "" is the smallest character element, the
maximum should be " ", but there is no obvious candidate for the minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < double <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or —Inf).

S4 methods

max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ..., na.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer (0).

pmax and pmin will also work on classed S3 or S4 objects with appropriate methods for compari-
son, is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

extSoftVersion 207

Examples

require (stats); require (graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

x <—- sort (rnorm(100)); cH <- 1.35

pmin (cH, quantile(x)) # no names

pmin (quantile(x), cH) # has names

plot (x, pmin(cH, pmax(-cH, x)), type = "b", main = "Huber's function")

cut0l <- function(x) pmax(pmin(x, 1), 0)

curve (x~2 - 1/4, -1.4, 1.5, col = 2)
curve (cut01 (x*2 - 1/4), col = "blue", add = TRUE, n = 500)
pmax (), pmin() preserve attributes of xfirst* argument
D <- diag(x = (3:1)/4) ; n0 <- numeric/()
stopifnot (identical (D, cut01 (D)),

identical (n0, cut01l(n0)),

identical (n0, cutO0l (NULL)),

identical
identical

n0, pmax(3:1, n0, 2)),
n0, pmax(n0, 4)))

extSoftVersion Report Versions of Third-Party Software

Description

Report versions of (external) third-party software used.

Usage

extSoftVersion ()

Details

The reports the versions of third-party software libraries in use. These are often external but might
have been compiled into R when it was installed.

With dynamic linking, these are the versions of the libraries linked to in this session: with static
linking, of those compiled in.

Value

A named character vector, currently with components

zlib The version of z11ib in use.
bzlib The version of bz1ib (from bzip2) in use.
XZ The version of 1ib1lzma (from xz) in use.

libdeflate The version of 1ibdeflate (if any otherwise " ") used when R was built.

PCRE The version of PCRE in use. PCREI1 has versions < 10.00, PCRE2 has versions
>=10.00.
ICU The version of ICU in use (if any, otherwise "").

TRE The version of 1ibtre in use.

208 factor

iconv The implementation and version of the i conv library in use (if known).

readline The version of readline in use (if any, otherwise ""). If using the emulation
by libedit aka editline this will be "EditLine wrapper" preceded
by the readline version it emulates: that is most likely to be seen on macOS.

BLAS Name of the binary/executable file with the implementation of BLAS in use (if
known, otherwise "").

Note that the values for bz1ib and pcre normally contain a date as well as the version number,

and that for t re includes several items separated by spaces, the version number being the second.

For iconv this will give the implementation as well as the version, for example "GNU libiconv
1.14","glibc 2.18" or "win_iconv" (which has no version number).

The name of the binary/executable file for BLAS can be used as an indication of which implemen-
tation is in use. Typically, the R version of BLAS will appear as 1ibR.so (LibR.dylib), R or
libRblas.so (libRblas.dylib), depending on how R was built. Note that 1ibRblas. so
(1ibRblas.dylib) may also be shown for an external BLAS implementation that had been
copied, hard-linked or renamed by the system administrator. For an external BLAS, a shared object
file will be given and its path/name may indicate the vendor/version. The detection does not work
on Windows nor for some uses of the Accelerate framework on macOS.

See Also

libcurlVersion for the version of 1ibCurl.
La_version for the version of LAPACK in use.
La_library for binary/executable file with LAPACK in use.
grSoftVersion for third-party graphics software.
tclVersion in package teltk for the version of Tcl/Tk.

pcre_config for PCRE configuration options.

Examples
extSoftVersion ()
the PCRE version
sub (" .*", "", extSoftVersion() ["PCRE"])
factor Factors
Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

factor

Usage

209

factor (x = character (), levels, labels = levels,
exclude = NA, ordered = is.ordered(x), nmax = NA)

ordered(x = character(), ...)

is.factor (x)
is.ordered (x)

as.factor (x)
as.ordered (x)

addNA (x, ifany = FALSE)

.valid.factor (object)

Arguments

X

levels

labels

exclude

ordered

nmax

ifany

object

Details

a vector of data, usually taking a small number of distinct values.

an optional vector of the unique values (as character strings) that x might have
taken. The default is the unique set of values taken by as.character (x),
sorted into increasing order of x. Note that this set can be specified as smaller
than sort (unique (x)).

either an optional character vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length 1.
Duplicated values in 1abels can be used to map different values of x to the
same factor level.

a vector of values to be excluded when forming the set of levels. This may be
factor with the same level set as x or should be a character.

logical flag to determine if the levels should be regarded as ordered (in the order
given).

an upper bound on the number of levels; see ‘Details’.
(in ordered (.)): any of the above, apart from ordered itself.
only add an NA level if it is used, i.e. if any (is.na (x)).

an R object.

The type of the vector x is not restricted; it only must have an as.character method and be
sortable (by order).

Ordered factors differ from factors only in their class, but methods and model-fitting functions may
treat the two classes quite differently, see options ("contrasts").

The encoding of the vector happens as follows. First all the values in exclude are removed from

levels. If x[1]
found for x[1] in
result is set to NA.

equals levels|[j], then the i-th element of the result is j. If no match is
levels (which will happen for excluded values) then the i-th element of the

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying labels. This should either be a set of

210 factor

new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor (x, exclude = NULL) applied to a factor without NAs is a no-operation unless there
are unused levels: in that case, a factor with the reduced level set is returned. If exclude is used,
since R version 3.4.0, excluding non-existing character levels is equivalent to excluding nothing,
and when exclude is a character vector, that is applied to the levels of x. Alternatively,
exclude can be factor with the same level set as x and will exclude the levels present in exclude.

The codes of a factor may contain NA. For a numeric x, set exclude = NULL to make NA an extra
level (prints as ‘<NA>’); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level)
is to use is.na on the left-hand-side of an assignment (as in is.na (f) [i] <- TRUE; indexing
inside is.na does not work). Under those circumstances missing values are currently printed as
‘<NA>’, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Where levels is not supplied, unique is called. Since factors typically have quite a small
number of levels, for large vectors x it is helpful to supply nmax as an upper bound on the number
of unique values.

When using c to combine a (possibly ordered) factor with other objects, if all objects are (possibly
ordered) factors, the result will be a factor with levels the union of the level sets of the elements, in
the order the levels occur in the level sets of the elements (which means that if all the elements have
the same level set, that is the level set of the result), equivalent to how un1list operates on a list of
factor objects.

Value

factor returns an object of class "factor" which has a set of integer codes the length of
x with a "levels" attribute of mode character and unique (!anyDuplicated(.)) en-
tries. If argument ordered is true (or ordered () is used) the result has class ¢ ("ordered",
"factor"). Undocumentedly for a long time, factor (x) loses all attributes (x) but
"names", and resets "levels" and "class".

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [. factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated (sometimes faster) form of
factor.

as.ordered (x) returns x if this is ordered, and ordered (x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

.valid.factor (object) checks the validity of a factor, currently only levels (object),
and returns TRUE if it is valid, otherwise a string describing the validity problem. This function is
used for validObject (<factor>).

Warning

The interpretation of a factor depends on both the codes and the "levels™" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as .numeric

factor 211

applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor £
to approximately its original numeric values, as.numeric (levels (f)) [f] is recommended
and slightly more efficient than as .numeric (as.character (f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops which provide meth-
ods for the Comparison operators, and for the min, max, and range generics in Summary of
"ordered". (The rest of the groups and the Math group generate an error as they are not mean-
ingful for factors.)

Only == and ! = can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.
Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even
a small proportion of repeats. However, identical character strings now share storage, so the dif-
ference is small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[. factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))

as.integer (ff) # the internal codes

(f. <= factor (ff)) # drops the levels that do not occur
ff[, drop = TRUE] # the same, more transparently

factor (letters[1:20], labels = "letter")

class (ordered(4:1)) # "ordered", inheriting from "factor"

z <— factor (LETTERS[3:1], ordered = TRUE)
and "relational" methods work:
stopifnot (sort(z) [c(1l,3)] == range(z), min(z) < max(z))

212
suppose you want "NA" as a level,
(x <= factor(c(l, 2, NA), exclude = NULL))
is.na(x) [2] <- TRUE
x # [1] 1 <NA> <NA>
is.na (x)
[1] FALSE TRUE FALSE

More rational, since R 3.4.0

file.access

and to allow missing values.

as

factor(c(l:2, NA), exclude = "") # keeps <NA> ,
factor(c(1:2, NA), exclude = NULL) # always did
exclude = <character>

z # ordered levels 'A < B < C'

factor(z, exclude = "C") # does exclude

factor(z, exclude = "B") # ditto

Now, labels maybe duplicated:
factor ()
x <- c¢("Man", "Male", "Man",
Map from 4 different

"Lady", "Female")

with duplicated labels allowing to "merge levels"

values to only two levels:

(xf <- factor(x, levels = c("Male", "Man" "Lady", "Female"),
labels = c("Male", "Male", "Female", "Female")))
#> [1] Male Male Male Female Female

#> Levels: Male Female

Using addNA ()

Month <- airquality$Month
table (addNA (Month))
table (addNA (Month,

ifany = TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access (names, mode = 0)

Tilde-expansion will be done: see

Arguments
names character vector containing file names.
path.expand.
mode integer specifying access mode required: see ‘Details’.
Details

The mode value can be the exclusive or (xor), i.e., a partial sum of the following values, and hence

mustbein 0:7,

0 test for existence.

1 test for execute permission.

file.choose 213

2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).
Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access () and the time you try to open the file. It is better to wrap file open attempts
intry.

Value

An integer vector with values 0 for success and -1 for failure.

Note

This was written as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys . chmod to change permissions, and t ry for a
‘test it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access(dir("."))

table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose (new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.
Value

A character vector of length one giving the file path.

214 file.info

See Also

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info (..., extra_cols = TRUE)

file.mode(...)
file.mtime (...)
file.size(...)

Arguments

character vectors containing file paths. Tilde-expansion is done: see
path.expand.

extra_cols logical: return all cols rather than just the first six.

Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
file.exists on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

See files for how file paths with marked encodings are interpreted.

On unix alikes: On most systems symbolic links are followed, so information is given about the
file to which the link points rather than about the link.

On Windows: File modes are probably only useful on NTFS file systems, and it seems all three
digits refer to the file’s owner. The execute/search bits are set for directories, and for files

based on their extensions (e.g., ‘.exe’, ‘. com’, ‘.cmd’ and ‘.bat’ files). file.access
will give a more reliable view of read/write access availability to the R process.

UTEF-8-encoded file names not valid in the current locale can be used.

Junction points and symbolic links are followed, so information is given about the
file/directory to which the link points rather than about the link.

file.info 215

Value

For file.info (), data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
object of class "POSIXct": file modification, ‘last status change’ and last ac-
cess times.

On unix alikes: uid: integer, the user ID of the file’s owner.
gid: integer, the group ID of the file’s group.
uname: character, uid interpreted as a user name.
grname: character, gid interpreted as a group name. Unknown user and group names will
be NA.

On Windows only: exe: character indicating the sort of executable. Possible values are "no",
"msdos", "winl6é", "win32", "win64" and "unknown". Note that a file (e.g., a
script file) can be executable according to the mode bits but not executable in this sense.

uname: character, user name.
udomain: character, user domain name. User name and domain will be NA when they cannot
be resolved, e.g. because of insufficient permissions or a network failure.

If extra_cols is false, only the first six columns are returned: as these can all be found from
a single C system call this can be faster. (However, properly configured systems will use a ‘name
service cache daemon’ to speed up the name lookups.)

Entries for non-existent or non-readable files will be NA.

The uid, gid, uname and grname columns may not be supplied on a non-POSIX Unix-alike
system, and except uname will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ct ime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

The resolution of the file times depends on both the OS and the type of the file system. Modern file
systems typically record times to an accuracy of a microsecond or better: notable exceptions are
HFS+ on macOS (recorded in seconds) and modification time on older FAT systems (recorded in
increments of 2 seconds). Note that "POSIXct" times are by default printed in whole seconds: to
change that see strftime.

file.mode (), file.mtime () and file.size () are fast convenience wrappers returning
just one of the columns.

Note

Some (now old) unix alike systems allow files of more than 2Gb to be created but not accessed by
the stat system call. Such files may show up as non-readable (and very likely not be readable by
any of R’s input functions).

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys.chmod to change permissions.

216 file.path

Examples

ncol (finf <- file.info(dir())) # at least six

finf # the whole list

Those that are more than 100 days old

finf <- file.info(dir (), extra_cols = FALSE)

finf[difftime (Sys.time (), finf[,"mtime"], units = "days") > 100 , 1:4]

file.info("no-such-file-exists")

E.g., for R-core, in a R-devel version:

if(Sys.info () [["sysname"]] == "Linux")
sort (file.mtime (file.path(R.home ("bin"),
C (nn ,
file.path(c("", "exec"), "R")))
))
file.path Construct Path to File
Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)
Arguments
character vectors. Long vectors are not supported.
fsep the path separator to use (assumed to be ASCII).
Details

The implementation is designed to be fast (faster than paste) as this function is used extensively
in R itself.

It can also be used for environment paths such as PATH and R_LIBS with fsep=
.PlatformS$path. sep.

Trailing path separators are invalid for Windows file paths apart from ‘/” and ‘d: /’ (although some
functions/utilities do accept them), so a trailing / or \ is removed there.

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

An element of the result will be marked (see Encoding) as UTF-8 if run in a UTF-8 locale (when
marked inputs are converted to UTF-8) or if a component of the result is marked as UTF-§, or as
Latin-1 in a non-Latin-1 locale.

Note

The components are by default separated by / (not \) on Windows.

file.show 217

See Also

basename, normalizePath, path.expand.

file.show Display One or More Text Files

Description

Display one or more (plain) text files, in a platform specific way, typically via a ‘pager’.

Usage
file.show (..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption ("pager"),
encoding = "")
Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in . . .)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,

title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used, see ‘Details’.
encoding character string giving the encoding to be assumed for the file(s).
Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command (a full path or a command found on the PATH) to run on the set of files. The ‘factory-
fresh’ default is to use ‘R_HOME /bin/pager’, which is a shell script running the command-line
specified by the environment variable PAGER whose default is set at configuration, usually to less.
On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such as "internal" and "console" on Windows),
or by letting pager be an R function which will be called with arguments (files, header,
title, delete.file) corresponding to the first four arguments of £ile . show and take care
of interfacing to the GUL

The R. app GUI on macOS uses its internal pager irrespective of the setting of pager.

218

files

Not all implementations will honour delete.file. In particular, using an external pager on
Windows does not, as there is no way to know when the external application has finished with the

file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

file.exists,list.files.

Text-type help and RShowDoc call file. show

Consider getOption ("pdfviewer") and, e.g., system for displaying pdf files.

file.edit.

Examples

file.show(file.path (R.home ("doc"),

"COPYRIGHTS"))

files

File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage
file.create (..., showWarnings = TRUE)
file.exists(...)
file.remove(...)
file.rename (from, to)
file.append(filel, file2)
file.copy(from, to, overwrite = recursive, recursive = FALSE,
copy.mode = TRUE, copy.date = FALSE)
file.symlink (from, to)
file.link (from, to)
Arguments
..., filel, file2
character vectors, containing file names or paths.
from, to character vectors, containing file names or paths. For file.copy and
file.symlink to can alternatively be the path to a single existing directory.
overwrite logical; should existing destination files be overwritten?
showWarnings logical; should the warnings on failure be shown?
recursive logical. If to is a directory, should directories in from be copied (and their

copy .mode

copy.date

contents)? (Like cp —R on POSIX OSes.)
logical: should file permission bits be copied where possible?

logical: should file dates
Sys.setFileTime.

be preserved where possible? See

files 219

Details

The ... arguments are concatenated to form one character string: you can specify the files
separately or as one vector. All of these functions expand path names: see path.expand.
(file.exists silently reports false for paths that would be too long after expansion: the rest
will give a warning.)

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if
you have the permissions needed by stat. Existence can also be checked by file.access,
which might use different permissions and so obtain a different result. Note that the existence of
a file does not imply that it is readable: for that use file.access.) What constitutes a ‘file’ is
system-dependent, but should include directories. (However, directory names must not include a
trailing backslash or slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the
result indicates if the link points to an actual file, not just if the link exists. On Windows, the result is
unreliable for a broken symbolic link (junction). Lastly, note the different function exists which
checks for existence of R objects.

file.remove attempts to remove the files named in its argument. On most Unix platforms “file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and £ rom and t o must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations
of the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in
particular in the interpretation of ‘file’: most platforms will not rename files from one file system to
another. NB: This means that renaming a file from a temporary directory to the user’s filespace or
during package installation will often fail. (On Windows, file.rename can rename files but not
directories across volumes.) On platforms which allow directories to be renamed, typically neither
or both of from and t o must a directory, and if t o exists it must be an empty directory.

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to £ile . append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The to
argument can specify a single existing directory. If copy.mode = TRUE file read/write/execute
permissions are copied where possible, restricted by ‘umask’. (On Windows this applies only to
files.) Other security attributes such as ACLs are not copied. On a POSIX filesystem the targets of
symbolic links will be copied rather than the links themselves, and hard links are copied separately.
Using copy.date = TRUE may or may not copy the timestamp exactly (for example, fractional
seconds may be omitted), but is more likely to do so as from R 3.4.0.

file.symlink and file.link make symbolic and hard links on those file systems which
support them. For file.symlink the t o argument can specify a single existing directory. (Unix
and macOS native filesystems support both. Windows has hard links to files on NTFS file systems
and concepts related to symbolic links on recent versions: see the section below on the Windows
version of this help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

File arguments with a marked encoding (see Encoding are if possible translated to the native
encoding, except on Windows where Unicode file operations are used (so marking as UTF-8 can be
used to access file paths not in the native encoding on suitable file systems).

220 files

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and macOS, but can be found on all OSes
(for example a FAT-formatted USB drive is probably case-insensitive).

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

Warning

Always check the return value of these functions when used in package code. This is especially im-
portant for £ile . rename, which has OS-specific restrictions (and note that the session temporary
directory is commonly on a different file system from the working directory): it is only portable to
use £ile.rename to change file name(s) within a single directory.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.
file_test, Sys.readlink (for ‘symlink’s).

https://en.wikipedia.org/wiki/Hard_link and https://en.wikipedia.
org/wiki/Symbolic_1ink for the concepts of links and their limitations.

Examples
cat ("file A\n", file = "A")
cat ("file B\n", file = "B")

file.append("A", "B")
file.create ("A") # (trashing previous)
file.append ("A", rep("B", 10))
if (interactive()) file.show("A") # -> the 10 lines from 'B'
file.copy ("A", "C")
dir.create ("tmp")
file.copy (c("A", "B"), "tmp")
list.files("tmp") # -> "A" and "B"
setwd ("tmp")
file.remove ("A") # the tmp/A file
file.symlink (file.path("..", c("A", "B")), ".")
|-—> (TRUE,FALSE) : ok for A but not B as it exists already
setwd("..")
unlink ("tmp", recursive = TRUE)

https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Symbolic_link

files2 221

file.remove ("A", "B", "C")

files2 Manipulation of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage
dir.exists (paths)
dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod (paths, mode = "0777", use_umask = TRUE)

Sys.umask (mode = NA)

Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done. Necessarily a non-empty string.
paths character vectors containing file or directory paths. Tilde expansion (see

path.expand) is done.

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir —p.
mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys.chmod it is recycled along paths.
use_umask logical: should the mode be restricted by the umask setting?
Details

dir.exists checks that the paths exist (in the same sense as file.exists) and are directo-
ries.

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path
separators are discarded. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir, e.g. man 2 mkdir (and not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create ("G.S.") creates ‘"G.S"’. This
is undocumented, and what are the precise circumstances is unknown (and might depend on the
version of Windows). Also avoid directory names with a trailing space.

Sys.chmod sets the file permissions of one or more files. It may not be supported on a system
(when a warning is issued). See the comments for dir.create for how modes are interpreted.
Changing mode on a symbolic link is unlikely to work (nor be necessary). For more details see your
OS’s documentation on the system call chmod, e.g. man 2 chmod (and not that on the command-
line utility of that name). Whether this changes the permission of a symbolic link or its target is

222 find.package

OS-dependent (although to change the target is more common, and POSIX does not support modes
for symbolic links: BSD-based Unixes do, though).

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just
returns the current value. It may not be supported (when a warning is issued and "0" is returned).
For more details see your OS’s documentation on the system call umask, e.g. man 2 umask.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

See the help on files for how file paths with marked encodings are interpreted.

Value

dir.exists returns a logical vector of TRUE or FALSE values (without names).

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation suc-
ceeded for each of the files attempted. Using a missing value for a path name will always
be regarded as a failure. dir.create indicates failure if the directory already exists. If
showWarnings = TRUE, dir.create will give a warning for an unexpected failure (e.g., not
for a missing value nor for an already existing component for recursive = TRUE).

Sys . umask returns the previous value of the umask, as a length-one object of class "octmode":
the visibility flag is off unless mode is NA.

See also the section in the help for file.exists on case-insensitive file systems for the inter-
pretation of path and paths.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.exists, file.path, 1list.files, wunlink, basename,
path.expand.

Examples
Not run:
Fix up maximal allowed permissions in a file tree
Sys.chmod(list.dirs("."), "777")
f <- list.files(".", all.files = TRUE, full.names = TRUE, recursive = TRUE)
Sys.chmod (f, (file.mode(f) | "664"))

End (Not run)

find.package Find Packages

Description

Find the paths to one or more packages.

find.package

Usage

find.package (package, lib.loc = NULL, quiet = FALSE,
verbose = getOption ("verbose"))

path.package (package, quiet = FALSE)

packageNotFoundError (package, lib.loc, call = NULL)

223

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the loaded names-
pace, then all libraries currently known in . 1ibPaths ().
quiet logical. Should this not give warnings or an error if the package is not found?
verbose a logical. If TRUE, additional diagnostics are printed, notably when a package
is found more than once.
call call expression.
Details

find.package returns path to the locations where the given packages are found. If 1ib. loc
is NULL, then loaded namespaces are searched before the libraries. If a package is found more
than once, the first match is used. Unless quiet = TRUE a warning will be given about the named
packages which are not found, and an error if none are. If verbose is true, warnings about
packages found more than once are given. For a package to be returned it must contain a either a
‘Meta’ subdirectory or a ‘DESCRIPTION’ file containing a valid version field, but it need not
be installed (it could be a source package if 1ib. loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the
packages named are not attached, and given an error if none are.

packageNotFoundError creates an error condition object of class
packageNotFoundError for signaling errors. The condition object contains the fields
packageand 1ib.loc.

Value

A character vector of paths of package directories.

See Also

path.expand and normalizePath for path standardization.

224 findInterval

Examples

try (find.package ("knitr"))
will not give an error, maybe a warning about xallx locations it is found:
find.package ("kitty", quiet=TRUE, verbose=TRUE)

Find all .libPaths () entries a package is found:
findPkgAll <- function (pkg)
unlist (lapply (.libPaths (), function(lib)
find.package (pkg, lib, quiet=TRUE, verbose=FALSE)))

findPkgAll ("MASS")
findPkgAll ("knitr")

findInterval Find Interval Numbers or Indices

Description

Given a vector of non-decreasing breakpoints in vec, find the interval containing each element of
x;1.e.,if 1 <— findInterval (x,Vv), foreachindex jin x vi; < x5 < V41 where vg := —00,
UN41 = +00, and N <— length (v). At the two boundaries, the returned index may differ by 1,
depending on the optional arguments rightmost.closedand all.inside.

Usage

findInterval (x, vec, rightmost.closed = FALSE, all.inside = FALSE,
left.open = FALSE, checkSorted = TRUE, checkNA = TRUE)

Arguments
x numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec [N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into 1, ...,N-1, i.e., O is
mapped to 1 and N to N-1.

left.open logical; if true all the intervals are open at left and closed at right; in
the formulas below, < should be swapped with < (and > with >), and
rightmost.closed means ‘leftmost is closed’. This may be useful, e.g.,
in survival analysis computations.

checkSorted logical indicating if vec should be checked, i.e., is.unsorted (vec) is as-
serted to be false. Setting this to FALSE skips the check gaining speed, but may
return nonsense results in case vec is not sorted.

checkNA logical indicating if each x [1] should be checked as with is.na(.). Set-
ting this to FALSE in case of NA’s in x [] may result in platform dependent
nonsense.

findInterval 225

Details

The function findInterval finds the index of one vector x in another, vec, where the latter
must be non-decreasing. Where this is trivial, equivalent to apply (outer (x, vec, *>=7),
1, sum), as a matter of fact, the internal algorithm uses interval search ensuring O(nlog N') com-
plexity where n <— length (x) (and N <- length (vec)). For (almost) sorted x, it will be
even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval (t, sort (X)) is identical to nF,(t; X1,...,X,) where F, is the empirical
distribution function of X1, ..., X,,.

When rightmost.closed = TRUE, the result for x [j] = vec [N] (= maxwec), is N — 1 as
for all other values in the last interval.

left.open = TRUE is occasionally useful, e.g., for survival data. For (anti-)symmetry reasons, it
is equivalent to using “mirrored” data, i.e., the following is always true:

identical (
findInterval (x, v, left.open= TRUE, ...)
N - findInterval (-x, -v[N:1], left.open=FALSE, ...)

~

where N <- length (vec) as above.

Value

vector of length 1length (x) with values in 0 : N (and NA) where N <- length (vec), or values
coerced to 1: (N-1) if and only if all.inside = TRUE (equivalently coercing all x values
inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

See Also

approx (x, method = "constant") whichis a generalization of findInterval (), ecdf
for computing the empirical distribution function which is (up to a factor of n) also basically the
same as findInterval(.).

Examples

x <- 2:18
v <— c(5, 10, 15) # create two bins [5,10) and [10,15)
cbind(x, findInterval (x, Vv))

N <- 100
X <- sort (round(stats::rt (N, df = 2), 2))
tt <- ¢ (=100, seqg(-2, 2, length.out = 201), +100)

it <= findInterval (tt, X)
tt[it < 1 | it >= N] # only first and last are outside range (X)
stopifnot (identical (it, ## suppressing the checks is faster *BUT* dangerous,

you xknow* that X is sorted and tt contains no NA's

findInterval (tt, X, checkSorted=FALSE, checkNA=FALSE)))

226 force

'left.open = TRUE' means "mirroring"
N <- length (v)
stopifnot (identical (
findInterval(x, v, left.open=TRUE) ,
N - findInterval (-x, -vI[N:1])))

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force (x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() vy

1f <= vector ("list", 5)

for (i in seq_along(lf)) 1£f[[i]] <= f£(1)
1£f[[1]]1() # returns 5

g <- function(y) { force(y); function() y }
lg <= vector("list", 5)

for (i in seqg_along(lg)) 1lgl[[i]] <- g(i)
1g[[1]11() # returns 1

This is identical to
g <- function(y) { y; function() vy }

forceAndCall 227

forceAndCall Call a function with Some Arguments Forced

Description
Call a function with a specified number of leading arguments forced before the call if the function
is a closure.

Usage

forceAndCall (n, FUN, ...)

Arguments
n number of leading arguments to force.
FUN function to call.
arguments to FUN.
Details
forceAndCall calls the function FUN with arguments specified in If the value of FUN

is a closure then the first n arguments to the function are evaluated (i.e. their delayed evaluation
promises are forced) before executing the function body. If the value of FUN is a primitive then the
call FUN (.. .) is evaluated in the usual way.

forceAndCall is intended to help defining higher order functions like apply to behave more
reasonably when the result returned by the function applied is a closure that captured its arguments.

See Also

force, promise, closure.

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK
.Fortran (.NAME, ..., NAOK

FALSE, DUP = TRUE, PACKAGE, ENCODING)
FALSE, DUP = TRUE, PACKAGE, ENCODING)

228

Arguments

.NAME

NAOK

PACKAGE

DUP, ENCODING

Details

Foreign

a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo", "RegisteredNativeSymbol"
or "NativeSymbol" referring to such a name.

arguments to be passed to the foreign function. Up to 65.

if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, “*.d11’,...).

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

For back-compatibility, accepted but ignored.

These functions can be used to make calls to compiled C and Fortran code. Later interfaces are
.Call and .External which are more flexible and have better performance.

These functions are primitive, and . NAME is always matched to the first argument supplied (which

should not be named). The other named arguments follow . . . and so cannot be abbreviated. For
clarity, should avoid using names in the arguments passed to . .. that match or partially match
.NAME.

Value

A list similar to the . .

. list of arguments passed in (including any names given to the arguments),

but reflecting any changes made by the C or Fortran code.

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

R C Fortran

integer int * integer

numeric double * double precision
—or — float * real

complex Rcomplex * double complex
logical int * integer
character char *»* [see below]

raw unsigned char » not allowed

list SEXP * not allowed

other SEXP not allowed

Note: The C types

corresponding to integer and logical are int, not long as in S. This

difference matters on most 64-bit platforms, where int is 32-bit and long is 64-bit (but not on

64-bit Windows).

Note: The Fortran

type corresponding to logical is integer, not logical: the difference

matters on some Fortran compilers.

Foreign 229

Numeric vectors in R will be passed as type double * to C (and as double precision to
Fortran) unless the argument has attribute Csingle set to TRUE (use as.single or single).
This mechanism is only intended to be used to facilitate the interfacing of existing C and Fortran
code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double i; }. It may or may not be equivalent to the C99 double complex type, depending
on the compiler used.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN=-2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values: however non-zero
values other than INT_MIN are mapped to TRUE.

Missing (NA) string values are passed to . C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use . Call.

Using a character string with . Fortran is deprecated and will give a warning. It passes the first
(only) character string of a character vector as a C character array to Fortran: that may be usable
as character=255 if its true length is passed separately. Only up to 255 characters of the string
are passed back. (How well this works, and even if it works at all, depends on the C and Fortran
compilers and the platform.)

Lists, functions or other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much preferred. All inputs apart from atomic vectors should be regarded as read-only,
and all apart from vectors (including lists), functions and environments are now deprecated.

Fortran symbol names

All Fortran compilers known to be usable to compile R map symbol names to lower case, and so
does .Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to names
not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use .Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuring R, especially if the subroutine name
is not lower-case or includes an underscore. The most portable way to call Fortran 9x code from R
is to use . C and the Fortran 2003 module i so_c_binding to provide a C interface to the Fortran
code.

Copying of arguments

Character vectors are copied before calling the compiled code and to collect the results. For other
atomic vectors the argument is copied before calling the compiled code if it is otherwise used in the
calling code.

Non-atomic-vector objects are read-only to the C code and are never copied.

This behaviour can be changed by setting opt ions (CBoundsCheck = TRUE) . In that case raw,
logical, integer, double and complex vector arguments are copied both before and after calling the
compiled code. The first copy made is extended at each end by guard bytes, and on return it is
checked that these are unaltered. For . C, each element of a character vector uses guard bytes.

230 formals

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass . NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dyn.load, .Call.

The ‘Writing R Extensions’ manual.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage
formals (fun = sys.function(sys.parent()), envir = parent.frame())
formals (fun, envir = environment (fun)) <- wvalue
Arguments
fun a function, or see ‘Details’.
envir environment in which the function should be defined (or found via get ()
in the first case and when fun a character string).
value alist (orpairlist, hence possibly NULL) of R expressions.
Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for in envir, by default from the parent frame. If it is not specified, the function calling
formals is used.

Only closures, i.e., non-primitive functions, have formals, not primitive functions.
Note that formals (args (£)) gives a formal argument list for all functions £, primitive or not.

Value
formals returns the formal argument list of the function specified, as apairlist, or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function, dropping attributes.

format 231

See Also

formalArgs (from methods), a shortcut for names (formals(.)). args for a human-
readable version, and as intermediary to get formals of a primitive function.
alist to construct a typical formals value, see the examples.

The three parts of a (non-primitive) function areits formals, body, and environment.

Examples

require (stats)
formals (1m)

If you just want the names of the arguments, use formalArgs instead.
names (formals (1m))
methods:: formalArgs (1lm) # same

formals returns a pairlist. Arguments with no default have type symbol (aka name) .
str(formals (1m))

formals returns NULL for primitive functions. Use it in combination with
args for this case.
is.primitive (T+7)

formals (T+7)
formals (args (T+7))

You can overwrite the formal arguments of a function (though this is
advanced, dangerous coding).
f <- function(x) a + b

formals (f) <- alist(a =, b = 3)
£ # function(a, b = 3) a + b
£f(2) # result =5
format Encode in a Common Format

Description

Format an R object for pretty printing, notably encoding vector or column elements into a common
format.

Usage

format (x, ...)

Default S3 method:

format (x, trim = FALSE, digits = NULL, nsmall = 0L,
Justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = ", big.interval = 3L,
small.mark = "", small.interval 5L,
decimal.mark = getOption ("OutDec"),
zero.print = NULL, dropOtrailing = FALSE, ...)

232 format
S3 method for class 'data.frame'
format (x, ..., justify = "none", cut.names = TRUE)
S3 method for class 'factor'
format (x, ...)
S3 method for class 'AsIs'
format (x, width = 12, ...)
Arguments
X any R object (conceptually); typically numeric.
trim logical; if FALSE, logical, numeric and complex values are right-justified to a

common width: if TRUE the leading blanks for justification are suppressed.

digits a positive integer indicating how many significant digits are to be used for nu-
meric and complex x. The default, NULL, uses getOption ("digits").
This is a suggestion: enough decimal places will be used so that the smallest (in
magnitude) number has this many significant digits, and also to satisfy nsmall.
(For more, notably the interpretation for complex numbers see signif.)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are 0 <=
nsmall <=20.

justify should a character vector be left-justified (the default), right-justified, centred
or left alone. Can be abbreviated.

cut.names logical passed to the 1ist method of as.data.frame ().

width default method: the minimum field width or NULL or O for no restriction.

AsIs method: the maximum field width for non-character objects. NULL cor-
responds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical, complex nor logical NAs, which are always
encoded as "NA".

scientific either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen")). Missing values correspond to the current default
penalty.

Ce further arguments passed to or from other methods.

big.mark, big.interval, small.mark, small.interval,

decimal.mark, zero.print, dropOtrailing
used for prettying (longish) numerical and complex sequences. Passed to
prettyNum: that help page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (see format .Date), date-times (see format.POSIXct) and for other classes such as
format .octmode and format .dist.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column. Methods for columns are often similar to as.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class "AsIs".

format 233

format . factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format .AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects and (atomic) matrices are passed to the default method (and so width
does not apply). Otherwise it calls toSt ring to convert the object to character (if a vector or list,
element by element) and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print (quote = FALSE)
and not as displayed by cat. Character strings are padded with blanks to the display width of the
widest. (If na.encode = FALSE missing character strings are not included in the width compu-
tations and are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all
the elements to at least the digits significant digits. However, if all the elements then have
trailing zeroes, the number of decimal places is reduced until at least one element has a non-zero
final digit; see also the argument documentation for big. », small. x etc, above. See the note in
print.default aboutdigits >= 16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.
format.default (x) now provides a “minimal” string when isS4 (x) is true.

While the internal code respects the option getOption ("OutDec") for the ‘decimal mark’
in general, decimal .mark takes precedence over that option. Similarly, scientific takes
precedence over getOption ("scipen").

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format .default (x, ...) to
each element of the list (after un1isting elements which are themselves lists), and then collapsing
the result for each element with paste (collapse =", "). The defaults in this case are t rim
= TRUE, justify = "none" since one does not usually want alignment in the collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format .info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString,
encodeString.

Examples

format (1:10)
format (1:10, trim = TRUE)

234 format.info

zz <- data.frame (" (row names)"= c("aaaaa", "b"), check.names = FALSE)
format (zz)
format (zz, justify = "left")

use of nsmall

format (13.7)

format (13.7, nsmall = 3)
format (c (6.0, 13.1), digits 2)

format (c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format (2731-1)
format (2731-1, scientific = TRUE)
scientific = numeric scipen (= {scilentific notation {pen}alty)
X <- c¢(le5, 1000, 10, 0.1, .001, .123)
t (sapply (setNames (,-4:1),

\ (sci) sapply(x, format, scientific=sci)))

a list

z <- list(a letters([1:3], b = (-pi+0i)~((-2:2)/2), ¢ = c(1,10,100,1000),
d c("a", "longer", "character", "string"),
g = quote(a + b), e = expression(l+x))

can you find the "2" small differences?

(fl <- format (z, digits = 2))

(f2 <- format (z, digits = 2, justify = "left", trim = FALSE))
fl == f2 ## 2 FALSE, 4 TRUE
A "minimal" format () for S4 objects without their own format () method:
cc <- methods::getClassDef ("standardGeneric")
format (cc) ## "<S4 class >
format.info format(.) Information
Description

Information is returned on how format (x, digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments
X an atomic vector; a potential argument of format (x, ...).
digits how many significant digits are to be used for numeric and complex x. The

default, NULL, uses getOption ("digits").

nsmall (see format (..., nsmall)).

format.pval

Value

An integer vector of length 1, 3 or 6, say r.

235

For logical, integer and character vectors a single element, the width which would be used by

format if width = NULL.

For numeric vectors:

r(l] width (in characters) used by format (x)

r(2] number of digits after decimal point.

r[3] in 0:2;if >1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further

elements corresponding to the imaginary parts.

See Also

format (notably about digits >=16), formatC.

Examples
dd <- options("digits") ; options(digits =
format.info (123) # 3 0
format.info (pi) 0

o O o O

(# 8
format.info (1e8) # 5
format.info (1e222) # 6

x <- pix10”c(-10,-2,0:2,8,20)

)

1 - exponential "le+08"
2 - exponential "le+222"

#—-— for the following

names (x) <- formatC(x, width = 1, digits = 3, format = "g")
cbind (sapply (x, format))
t (sapply(x, format.info))
using at least 8 digits right of "."
t (sapply(x, format.info, nsmall = 8))
Reset old options:
options (dd)
format.pval Format P Values
Description
format .pval is intended for formatting p-values.
Usage
format.pval (pv, digits = max(l, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA",

236 formatC

Arguments
pv a numeric vector.
digits how many significant digits are to be used.
eps a numerical tolerance: see ‘Details’.
na.form character representation of NAs.
further arguments to be passed to format such as nsmall.
Details

format .pval is mainly an auxiliary function for print . summary . lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps] " (where ‘[eps] stands for format (eps, digits)).

Value

A character vector.

Examples

format.pval (c(stats::runif (5), pi~-100, NA))
format.pval(c (0.1, 0.0001, le-27))

formatC Formatting Using C-style Formats

Description

formatC () formats numbers individually and flexibly using C style format specifications.

prettyNum() is wused for “prettifying” (possibly formatted) numbers, also in
format.default.

.format.zeros (x), an auxiliary function of prettyNum (), re-formats the zeros in a vector
x of formatted numbers.

Usage
formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"),
preserve.width = "individual",

zero.print = NULL, replace.zero = TRUE,
dropOtrailing = FALSE)

prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"), input.d.mark = decimal.mark,
preserve.width = c("common", "individual", "none"),

zero.print = NULL, replace.zero = FALSE,

formatC

237

dropOtrailing = FALSE, is.cmplx = NA,
-)

.format.zeros (x, zero.print, nx = suppressWarnings(as.numeric(x)),

Arguments

X

digits

width

format

flag

replace = FALSE, warn.non.fitting = TRUE)

an atomic numerical or character object, possibly complex only for
prettyNum (), typically a vector of real numbers. Any class is discarded,
with a warning.

the desired number of digits after the decimal point (format = "£") or signif-
icant digits (format = "g",="e" or="£fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6
digits is used. If specified as more than 50, 50 will be used with a warning
unless format = "£" where it is limited to typically 324. (Not more than 15—
21 digits need be accurate, depending on the OS and compiler used. This limit
is just a precaution against segfaults in the underlying C runtime.)

the total field width; if both digits and width are unspecified, width de-
faults to 1, otherwise to digits + 1. width = 0 willuse width = digits,
width < 0 means left justify the number in this field (equivalent to flag =
"—"). If necessary, the result will have more characters than width. For char-
acter data this is interpreted in characters (not bytes nor display width).

equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x [i] into
scientific format only if it saves space to do so and drop trailing zeros and deci-
mal point - unless £1ag contains " #" which keeps trailing zeros for the "g",
"G" formats.

"fg" (our own hybrid format) uses fixed format as "£", but digits as the
minimum number of significant digits. This can lead to quite long result strings,
see examples below. Note that unlike signif this prints large numbers with
more significant digits than digits. Trailing zeros are dropped in this format,
unless f1ag contains "#".

for formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243) or the C+99 standard.

"0" pads leading zeros;

"—" does left adjustment,

"+" ensures a sign in all cases, i.e., "+" for positive numbers ,

" " if the first character is not a sign, the space character " " will be used
instead.

"#" specifies “an alternative output form”, specifically depending on format.

" " onsome platform—locale combination, activates “thousands’ grouping” for
decimal conversion,

"I" in some versions of ‘glibc’ allow for integer conversion to use the lo-
cale’s alternative output digits, if any.

There can be more than one of these flags, in any order. Other characters used
to have no effect for character formatting, but signal an error since R 3.4.0.

238

mode

big.mark

big.interval

small.mark

formatC

"double" (or "real"), "integer" or "character". Default: Deter-
mined from the storage mode of x.

character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval deci-
mals after (hence small) the decimal point.

small.interval

see small.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.

input.d.mark if x is character, the character known to have been used as the numeric

decimal point in x.

preserve.width

zero.print

string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the
default, corresponds to format-like behavior whereas "individual™" is the
default in formatC (). Value can be abbreviated.

logical, character string or NULL specifying if and how zeros should be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

replace.zero, replace

logical; if zero.print is a character string, indicates if the exact zero entries
in x should be simply replaced by zero.print. Otherwise, depending on
the widths of the respective strings, the (formatted) zeroes are partly replaced
by zero.print and then padded with " " to the right were applicable. In
that case (false replace([.zero]), if the zero.print string does not fit, a
warning is produced (if warn.non. fitting is true).

This works via prettyNum(), which calls .format.zeros (*,
replace=replace.zero) three times in this case, see the ‘Details’.

warn.non.fitting

logical; if it is true, replace [.zero] is false and the zero.print string
does not fit, a warning is signalled.

dropOtrailing

is.cmplx

nx

Details

For numbers,

logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats. This is simply passed to
prettyNum (), see the ‘Details’.

optional logical, to be used when x is "character" to indicate if it stems
from complex vector or not. By default (NA), x is checked to ‘look like’
complex.

arguments passed to format.

numeric vector of the same length as x, typically the numbers of which the
character vector x is the pre-format.

formatC () calls prettyNum() when needed which itself calls

.format.zeros (x, replace=replace.zero). (“when needed”: when zero.print is
not NULL, dropOtrailingis true, or one of big.mark, small.mark, or decimal .mark

is not at default.)

formatC 239

If you set format it overrides the setting of mode, so formatC (123.45, mode =
"double", format = "d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC (c(6.11,
13.1), digits =2, format ="£fg") givesc("6.1", " 13"). If you want common for-
matting for several numbers, use format.

prettyNum is the utility function for prettifying x. x can be complex (or
format (<complex>)), here. If x is not a character, format (x[1], ...) is applied
to each element, and then it is left unchanged if all the other arguments are at their defaults. Use the
input.d.mark argument for prettyNum (x) when x is a character vector not resulting
from something like format (<number>) with a period as decimal mark.

Because gsub is used to insert the big.mark and small.mark, special characters need escap-
ing. In particular, to insert a single backslash, use "\\\\".

The C doubles used for R numerical vectors have signed zeros, which formatC may output as —0,
-0.000....

There is a warning if big.mark and decimal.mark are the same: that would be confusing to
those reading the output.

Value

A character object of same size and attributes as x (after discarding any class), in the current locale’s
encoding.

Unlike format, each number is formatted individually. Looping over each element of x, the C
function sprintf (.. .) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Note

The default for decimal.mark in formatC () was changed in R 3.2.0: for use within
print methods in packages which might be used with earlier versions: use decimal .mark
=getOption ("OutDec") explicitly.

Author(s)

formatC was originally written by Bill Dunlap for S-PLUS, later much improved by Martin
Maechler.

It was first adapted for R by Friedrich Leisch and since much improved by the R Core team.

References
Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C-like formatting.

240 formatC
Examples

xx <= pi x 10" (-5:4)

cbind (format (xx, digits = 4), formatC(xx))
cbind (formatC (xx, width 9, flag = "-"))
(
(

’
cbind (formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind (format (xx, digits = 4), formatC(xx, digits = 4, format = "fg"))

f <= (=2:4); f <- fx1l6"f

Default ("g") format:

formatC (pixf)

Fixed ("f") format, more than one flag ('width' partly "enlarged"):
cbind (formatC(pixf, digits = 3, width=9, format = "f", flag = "0+"))

formatC (c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width = 8, digits = 1)

note that some of the results here depend on the implementation
of long-double arithmetic, which is platform-specific.
xx <= c(le-12,-3.98765e-10,1.45645e-69,1e-70,pix1le37,3.44e4)

1 2 3 4 5 6

formatC (xx)

formatC(xx, format = "fg") # special "fixed" format.
formatC(xx[1:4], format = "f", digits = 75) #>> even longer strings
formatC(c(3.24, 2.3e-6), format = "f", digits = 11)

formatC(c(3.24, 2.3e-6), format = "f", digits = 11, dropOtrailing = TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:

prettyNum(r, big.mark = ", ")

Some Europeans:

prettyNum(r, big.mark = "'", decimal.mark = ",")

(dd <- sapply(1:10, function(i) paste((9:0)[1:i], collapse = "")))
prettyNum(dd, big_mark = mimy

examples of 'small.mark'

PN <- stats::pnorm(l:7, lower.tail = FALSE)

cbind (format (pN, small.mark = " ", digits = 15))

cbind (formatC(pN, small.mark = " ", digits 17, format = "f"))

cbind (ff <- format (1.2345 + 107(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:

fc <- formatC(1.234 + 107(0:8), format = "fg", width = 11, big.mark = "'")
cbind (fc)

Powers of two, stored exactly, formatted individually:

pow.2 <- formatC(27-(1:32), digits = 24, width = 1, format = "fg")

nicely printed (the last line showing 5732 exactly):
noquote (cbind (pow.2))

complex numbers:

r <— 10.0000001; rv <— (r/10)~(1:10)

(zv <= (rv + li*rv))

op <- options(digits = 7) ## (system default)

formatDL 241

(pnv <— prettyNum(zv))
stopifnot (pnv == "1+1i", pnv == format (zv),
pnv == prettyNum(zv, dropOtrailing = TRUE))
more digits change the picture:
options (digits = 8)
head (fv <- format (zv), 3)
prettyNum (fv)
prettyNum (fv, dropOtrailing = TRUE) # a bit nicer
options (op)

The ' flag
doLC <- FALSE # <= R warns, so change to TRUE manually if you want see the effect
if (doLC) |

0ldLC <- Sys.getlocale ("LC_NUMERIC")
Sys.setlocale ("LC_NUMERIC", "de_CH.UTF-8")
t
formatC(1.234 + 107(0:4), format = "fg", width = 11, flag = "'")
#H ——> ..., " 1'oo1m v 10'o01" on supported platforms
if (doLC) ## revert, typically to "C"
Sys.setlocale ("LC_NUMERIC", o0ldLC)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments
X a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.
y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.
style a character string specifying the rendering style of the description information.
Can be abbreviated. If "table", a two-column table with items and descrip-
tions as columns is produced (similar to Texinfo’s @table environment). If
"list", aLaTeX-style tagged description list is obtained.
width a positive integer giving the target column for wrapping lines in the output.
indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/ 9 for list style.
Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

242

function

Value

a character vector with the formatted entries.

Examples

Provide a nice summary of the numerical characteristics of the

machine R is running on:

writeLines (formatDL (unlist (.Machine)))

Inspect Sys.getenv () results in "list" style (by default, these are
printed in "table" style):

writeLines (formatDL (Sys.getenv (), style = "list"))
function Function Definition
Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
\ (arglist) expr
return (value)

Arguments
arglist empty or one or more (comma-separated) ‘name’ or ‘name = expression’
terms and/or the special token
expr an expression.
value an expression.
Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote”’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned. (The expression is evaluated as soon as return is called, in the evaluation
frame of the function and before any on.exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

The shorthand form \ (x) x + 1 is parsed as function (x) x + 1. It may be helpful in making
code containing simple function expressions more readable.

Technical details

This type of function is not the only type in R: they are called closures (a name with origins in
LISP) to distinguish them from primitive functions.

A closure has three components, its formals (its argument list), its body (expr in the ‘Usage’
section) and its environment which provides the enclosure of the evaluation frame when the
closure is used.

There is an optional further component if the closure has been byte-compiled. This is not normally
user-visible, but is indicated when functions are printed.

funprog 243

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args.
formals, body and environment for accessing the component parts of a function.

debug for debugging; using invisible inside return (.) for returning invisibly.

Examples

norm <- function (x) sqgrt (x%$*%$x)
norm (1:4)

An anonymous function:
(function(x, y){ z <= x"2 + y"2; x+y+z }) (0:7, 1)

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description
Reduce uses a binary function to successively combine the elements of a given vector and a
possibly given initial value.
Filter extracts the elements of a vector for which a predicate (logical) function gives true.
Find and Position give the first or last such element and its position in the vector, respectively.
Map applies a function to the corresponding elements of given vectors.

Negate creates the negation of a given function.

Usage

Reduce (f, x, 1init, right = FALSE, accumulate = FALSE, simplify = TRUE)
Filter (f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map (£, ...)

Negate (f)

Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments
f a function of the appropriate arity (binary for Reduce, unary for Filter,
Find and Position, k-ary for Map if this is called with k arguments). An
arbitrary predicate function for Negate.
x a vector.
init an R object of the same kind as the elements of x.
right a logical indicating whether to proceed from left to right (default) or from right

to left.

244 funprog

accumulate alogical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

simplify a logical indicating whether accumulated results should be simplified (by unlist-
ing) in case they all are length one.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

vectors to which the function is Map () ped, and other arguments of mapply
passed to it, e.g., MoreArgs.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. lLe., a left reduce
computes [= f(v1,v2), la = f(l1,v3), etc., and returns {,,_1; = f(l,—2,v,), and a right reduce
does -1 = f(vn—1,Vn), T2 = f(vp_2,7,—1) and returns , = f(v1,7r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that f is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate function £ to each element of x, coercing to logical if neces-
sary, and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds
to filter in Haskell or ‘remove—-if-not’ in Common Lisp.

Find and Position are patterned after Common Lisp’s ‘find-if’ and ‘position-if’, re-
spectively. If there is an element for which the predicate function gives true, then the first or last
such element or its position is returned depending on whether right is false (default) or true, re-
spectively. If there is no such element, the value specified by nomatch is returned. The current
implementation is not optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to
Common Lisp’s mapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function f, it creates
a function which returns the logical negation of what f returns.

See Also

Function clusterMap and mcmapply (not Windows) in package parallel provide parallel ver-
sions of Map.

Examples

A general-purpose adder:

add <- function(x) Reduce("+, x)

add(list (1, 2, 3))

Like sum (), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many

gc 245
arguments can be defined via reduction:
FOO <- function(...) Reduce (FO02, list(...))
FOO2 <- function(x, y) UseMethod ("FOO2")
FOO() methods can then be provided via FOO02 () methods.
A general-purpose cumulative adder:
cadd <- function(x) Reduce(+°, x, accumulate = TRUE)
cadd(seqg_len (7))
A simple function to compute continued fractions:
cfrac <- function(x) Reduce (function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:
cfrac(c(3, 7, 15, 1, 292))
Continued fraction approximation for Euler's number (e):
cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))
Map () now recycles similar to basic Ops:
Map("+7, 1, 1 : 3) ; 1+ 1:3
Map (*+°, numeric(), 1 : 3) ; numeric() + 1:3
Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log(exp (acos(cos(0))))
Reduce (Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)
function (x) Reduce (Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate (function(x) 1 + 1 / x, 30) (1)
which is the same as
cfrac(rep.int (1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqgrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqgrt (2, 30) (10) # Starting from a positive value => +sqgrt (2)
asqgrt (2, 30) (-1) # Starting from a negative value => -sqgrt (2)
A list of all functions in the base environment:
funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names (Filter (function(f) length(formals(f)) > 10, funs))
Number of functions in base with a '...' argument:
length (Filter (function (f)
any (names (formals (f)) %in% "..."),
funs))

Find all objects in the base environment which are *not* functions:
Filter (Negate (is.function), sapply (ls (baseenv()), get, baseenv()))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic
collection is either silent (verbose = FALSE) or prints memory usage statistics (verbose =

246 gc
TRUE).
Usage
gc (verbose = getOption ("verbose"), reset = FALSE, full = TRUE)
gcinfo (verbose)
Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUE the values for maximum space used are reset to the current
values.
full logical; if TRUE a full collection is performed; otherwise only more recently
allocated objects may be collected.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.
For an accurate report full = TRUE should be used.

It can be useful to call gc after a large object has been removed, as this may prompt R to return
memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells™, a relic of an
earlier allocator (that used a vector heap).

When gcinfo (TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0)
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger™", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc (reset = TRUE)
(or since R started).

gcinfo returns the previous value of the flag.

gc.time 247

See Also

The ‘R Internals’ manual.
Memory on R’s memory management, and gctorture if you are an R developer.
gc.time () reports time used for garbage collection.

reg.finalizer for actions to happen at garbage collection.

Examples
gc() #- do it now
gcinfo (TRUE) #-- in the future, show when R does it
#4 vvvvv use larger to *showx something
x <- integer (100000); for(i in 1:18) x <- c(x, 1)
gcinfo (verbose = FALSE) #-- don't show it anymore
gc (TRUE)

gc (reset = TRUE)

gc.time Report Time Spent in Garbage Collection

Description
This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time (on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Details

Due to timer resolution this may be under-estimate.

This is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

See Also

gc, proc . time for the timings for the session.

248 gctorture

Examples

gc.time ()

gctorture Torture Garbage Collector

Description
Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture (on = TRUE)
gctorture? (step, wait = step, inhibit_release = FALSE)

Arguments
on logical; turning it on/off.
step integer; run GC every step allocations; step = 0 turns the GC torture off.
wait integer; number of allocations to wait before starting GC torture.

inhibit_release
logical; do not release free objects for re-use: use with caution.

Details

Calling gctorture (TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture?2 provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gct orture? is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can help greatly in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

gctorture2 can also be invoked via environment variables at the start of the R session.
R_GCTORTURE corresponds to the step argument, R_GCTORTURE_WAIT to wait, and
R_GCTORTURE_INHIBIT_RELEASE to inhibit_release.

Value

Previous value of first argument.

Author(s)

Peter Dalgaard and Luke Tierney

get 249

get Return the Value of a Named Object

Description

Search by name for an object (get) or zero or more objects (mget).

Usage
get (x, pos = -1, envir = as.environment (pos), mode = "any",
inherits = TRUE)
mget (x, envir = as.environment (-1), mode = "any", ifnotfound,

inherits FALSE)

dynGet (x, ifnotfound = , minframe = 1L, inherits = FALSE)

Arguments
X For get, an object name (given as a character string or a symbol).
For mget, a character vector of object names.
pos,envir where to look for the object (see ‘Details’); if omitted search as if the name of
the object appeared unquoted in an expression.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?

ifnotfound Formget, a 11ist of values to be used if the item is not found: it will be coerced
to a list if necessary.
For dynGet any R object, e.g., acall to stop ().

minframe integer specifying the minimal frame number to look into.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as a positive integer (the position in the search list); as the character string name of an
element in the search list; or as an environment (including using sys.frame to access the
currently active function calls). The default of —1 indicates the current environment of the call to
get. The envir argument is an alternative way to specify an environment.

These functions look to see if each of the name(s) x have a value bound to it in the specified environ-
ment. If inherits is TRUE and a value is not found for x in the specified environment, the enclos-
ing frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

If mode is specified then only objects of that type are sought. mode here is a mixture of the mean-
ings of typeof andmode: "function" covers primitive functions and operators, "numeric",
"integer" and "double" all refer to any numeric type, "symbol" and "name" are equiv-
alent but "language" must be used (and not "call" or " ("). Currently, mode = "S4" and
mode = "object" are equivalent.

For mget, the values of mode and ifnotfound can be either the same length as x or of length
1. The argument i fnot found must be a list containing either the value to use if the requested

250 get

item is not found or a function of one argument which will be called if the item is not found, with
argument the name of the item being requested.

dynGet () is somewhat experimental and to be used inside another function. It looks for an object
in the callers, i.e., the sys. frame () s of the function. Use with caution.

Value

For get, the object found. If no object is found an error results. If the object is the internal missing
argument (aka R_MissingArgin C), a classed error, class "getMissingError" is signalled.

For mget, a named list of objects (found or specified via 1 fnot found).

Note

The reverse (or “inverse”) of a <— get (nam) is assign (nam, a), assigning a to name nam.

inherits = TRUE is the default for get in R but not for S where it had a different meaning.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

exists for checking whether an object exists; get 0 for an efficient way of both checking exis-
tence and getting an object.

assign, the inverse of get (), see above.

Use getAnywhere for searching for an object anywhere, including in other namespaces, and
getFromNamespace to find an object in a specific namespace.

Examples

get ("%o%")
test mget
el <- new.env ()

mget (letters, el, ifnotfound = as.list (LETTERS))

very low-level: get()ing the "missing argument", e.g., inside browser ()

ls.str(E <- environment ((\(m) \(){})())) # m : <missing>
str(ESm) # (empty) symbol
ee <- tryCatch(get ("m",E), error = function(e) e)
str (ee)
ee
stopifnot (exprs = {
inherits(ee, "missingArgError") # and
inherits(ee, "getMissingError")
##

inherits (tryCatch(get0("m", E), error=identity), "getMissingError")
is.symbol (ESm) # => valid argument to get (), and xalso* gets 'missing arg':
inherits (tryCatch(get (ESm) , error=identity), "getMissingError")

getDLLRegisteredRoutines 251

getDLLRegisteredRoutines

Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortranand .External.

Usage

getDLLRegisteredRoutines (dll, addNames = TRUE)

Arguments

dll

addNames

Details

a character string or DLLInfo object. The character string specifies the
file name of the DLL of interest, and is given without the file name ex-
tension (e.g., the ‘.d11’ or ‘.so’) and with no directory/path informa-
tion. So a file ‘MyPackage/libs/MyPackage.so’ would be specified as
‘MyPackage’.

The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by
DLL file name).

The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information.

There is a print method for the class, which prints only the types which have registered routines.

Value

A list of class "DLLRegisteredRoutines" with four elements corresponding to the routines
registered for the .C, .Call, .Fortran and .External interfaces. Each is a list (of class
"NativeRoutineList") with as many elements as there were routines registered for that in-

terface.

Each element identifies a routine and is an object of class "NativeSymbolInfo". An object of
this class has the following fields:

name

the registered name of the routine (not necessarily the name in the C code).

252 getLoadedDLLs

address the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

dll an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters

the number of arguments the native routine is to be called with.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

‘Writing R Extensions’ manual for symbol registration.

Duncan Temple Lang (2001). “In Search of C/C++ & FORTRAN Routines”. R News, 1(3), 20-23.
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf.

See Also

getLoadedDLLs, getNativeSymbolInfo for information on the entry points listed.

Examples

dlls <- getLoadedDLLs ()
getDLLRegisteredRoutines (dlls[["base"]])

getDLLRegisteredRoutines ("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description
This function provides a way to get a list of all the DLLs (see dyn . 1oad) that are currently loaded
in the R session.

Usage

getLoadedDLLs ()

Details

This queries the internal table that manages the DLLs.

Value

Anobject of class "DLLInfoList" whichisa 1ist with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has
the following entries.

name the abbreviated name.

path the fully qualified name of the loaded DLL.

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

getNativeSymbollnfo 253

dynamicLookup
a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has a method for $ which can be used to resolve native symbols
within that DLL. Therefore, one must access the R-level elements described above using [[,
eg. x[["name"]] orx[["handle"]].

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in

R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

Examples

getLoadedDLLs ()

utils::tail (getLoadedDLLs (), 2) # the last 2 loaded ones, still a DLLInfolist

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns a description of one or more dynamically loaded or ‘exported’ built-in native
symbols. For each name, it returns information about the name of the symbol, the library in which
it is located and, if available, the number of arguments it expects and by which interface it should
be called (i.e .Call, .C, .Fortran,or .External). Additionally, it returns the address of the
symbol and this can be passed to other C routines. Specifically, this provides a way to explicitly
share symbols between different dynamically loaded package libraries. Also, it provides a way to
query where symbols were resolved, and aids diagnosing strange behavior associated with dynamic
resolution.

Usage

getNativeSymbolInfo (name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

254 getNativeSymbollnfo

Arguments
name the name(s) of the native symbol(s).
PACKAGE an optional argument that specifies to which DLL to restrict the search for this
symbol. If this is "base™", we search in the R executable itself.
unlist a logical value which controls how the result is returned if the function is called

with the name of a single symbol. If unlist is TRUE and the number of sym-
bol names in name is one, then the NativeSymbolInfo object is returned.
If it is FALSE, then a list of NativeSymbolInfo objects is returned. This
is ignored if the number of symbols passed in name is more than one. To be
compatible with earlier versions of this function, this defaults to TRUE.

withRegistrationInfo
a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return just the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the ele-
ments of name in the call. Each NativeSymbolInfo object is a list containing the following
elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
class NativeSymbol. If withRegistrationInfo is TRUE and regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
usedincallsto .Call, .C, .Fortranand .External.

dll a list containing 3 elements:
name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.
path the fully qualified name of the DLL.

dynamicLookup a logical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field

numParameters
the number of arguments that should be passed in a call to this routine.

gettext 255

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is raised.

If name contains only one symbol name and unlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

Note

The third element of the NativeSymbolInfo objects was renamed from package to d11 in
R version 3.6.0, for consistency with the names of the NativeSymbolInfo objects returned by
getDLLRegisteredRoutines ().

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., n1s). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R-News, volume 1, number 3, 2001, p20-23 (https://www.r—-project.org/doc/
Rnews/Rnews_2001-3.pdf).

See Also

getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call,
dyn.load.

gettext Translate Text Messages

Description

Translation of text messages typically from calls to stop (), warning (), or message () hap-
pens when Native Language Support (NLS) was enabled in this build of R as it is almost always,
see also the bindtextdomain () example.

The functions documented here are the low level building blocks used explicitly or implicitly in
almost all such message producing calls and they attempt to translate character vectors or set where
the translations are to be found.

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

256 gettext

Usage
gettext (..., domain = NULL, trim = TRUE)
ngettext (n, msgl, msg2, domain = NULL)
bindtextdomain (domain, dirname = NULL)
Sys.setLanguage (lang, unset = "en")
Arguments
one or more character vectors.
trim logical indicating if the white space trimming in gettext () should happen.
trim=FALSE may be needed for compiled code (C / C++) messages which
often end with \n.
domain the ‘domain’ for the translation, a character string, or NULL; see ‘Details’.
n a non-negative integer.
msgl the message to be used in English for n = 1.
msg2 the message to be used in English forn=0, 2, 3,
dirname the directory in which to find translated message catalogs for the domain.
lang a character string specifying a language for which translations should be
sought.
unset a string, specifying the default language assumed to be current in the case
Sys.getenv ("LANGUAGE") is unset or empty.
Details

If domain is NULL (the default) in gettext or ngettext, the domain is inferred. If gettext
or ngettext is called from a function in the namespace of package pkg including called via
stop (), warning (), or message () from the function, or, say, evaluated as if called from
that namespace, see the evalqg () example, the domain is set to "R-pkg". Otherwise there is no
default domain and messages are not translated.

Setting domain = NA in gettext or ngettext suppresses any translation.

" " does not match any domain. In gettext or ngettext, domain = "" is effectively the same
as domain = NA.

If the domain is found, each character string is offered for translation, and replaced by its translation
into the current language if one is found.

The language to be used for message translation is determined by your OS default and/or the locale
setting at R’s startup, see Sys.getlocale (), and notably the LANGUAGE environment variable,
and also Sys.setLanguage () here.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg™".

For gettext, when trim is true as by default, leading and trailing whitespace is ignored
(“trimmed”) when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU gettext manual. The string
will often contain a single instance of $d to be used in sprintf. If English is used, msgl is
returned if n == 1 and msg2 in all other cases.

gettext 257

bindtextdomain is typically a wrapper for the C function of the same name: your system
may have a man page for it. With a non-NULL dirname it specifies where to look for mes-
sage catalogues: with dirname = NULL it returns the current location. If NLS is not enabled,
bindtextdomain (*, x) returns NULL. The special case bindtextdomain (NULL) calls
C level textdomain (textdomain (NULL)) for the purpose of flushing (i.e., emptying) the
cache of already translated strings; it returns TRUE when NLS is enabled.

The utility Sys . setLanguage (lang) combines setting the LANGUAGE environment variable
with flushing the translation cache by bindtextdomain (NULL).

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it
failed.

For Sys.setLanguage (), the previous LANGUAGE setting with attribute attr (x, "ok"),a
logical indicating success. Note that currently, using a non-existing language lang is still set
and no translation will happen, without any message.

Warning

These functions were written assuming that environment variable LANGUAGE is supported by the
implementation of 1ibint1l. This is almost universally true and (along with gettext et al.)
became part of the 2024 POSIX specification. In 2025, however, it was still ignored by the imple-
mentation in mus1 (one of the implementations available on Alpine Linux).

See Also

stop and warning make use of gettext to translate messages.

xgettext (package tools) for extracting translatable strings from R source files.

Examples

bindtextdomain ("R") # non-null if and only if NLS is enabled
for(n in 0:3)
print (sprintf (ngettext (n, "%d variable has missing wvalues",

"$d variables have missing values"),

n))

Not run: ## for translation, those strings should appear in R-pkg.pot as

msgid "$d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ""

msgstr[1] ""

End (Not run)

miss <- "One only" # this line, or the next for the ngettext () below
miss <- c("one", "or", "another")
cat (ngettext (length (miss), "variable", "variables"),

paste (sQuote (miss), collapse =", "),

258 getwd

ngettext (length(miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat (sprintf (ngettext (length (miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste (sQuote (miss), collapse =", ")))

thisLang <- Sys.getenv ("LANGUAGE", unset = NA) # so we can reset it

if (is.na(thisLang) || !nzchar(thisLang)) thisLang <- "en" # "factory" default
enT <- "empty model supplied"

Sys.setenv (LANGUAGE = "de") # may not always 'work'

gettext (enT, domain="R-stats")# "leeres Modell angegeben" (if translation works)
tget <- function () gettext (enT)

tget () # not translated as fn tget() 1is not from "stats" pkg/namespace
evalqg(function () gettext (enT), asNamespace ("stats")) () # xis*x translated

Sys.setLanguage() -- typical usage —-

Sys.setLanguage ("en") -> oldSet # does set LANGUAGE env.var

errMsg <- function (expr) tryCatch(expr, error=conditionMessage)

(errMsg(l + "2") —-> err)

Sys.setLanguage ("fr")

errMsg (1l + "2")

Sys.setLanguage ("de")

errMsg (1l + "2")

Usually, you would reset the language to "previous" via
Sys.setLanguage (oldSet)

A show off of translations -- platform (font etc) dependent:
The translation languages available for "base" R in this version of R:
if (capabilities ("NLS")) withAutoprint ({

langs <- list.files (bindtextdomain ("R"),

pattern = ""[a-z] {2} (_[A-Z]1{2}|Qquot) ?$")

langs

txts <- sapply (setNames (,langs),

function(lang) { Sys.setlLanguage (lang)

gettext ("incompatible dimensions", domain="R-stats") })
cbind (txts)
(nTrans <- length (unique (txts)))
(not_translated <- names (txts[txts == txts[["en"]]]))

b

Here, we reset to the xoriginalx setting before the full example started:
if (nzchar (thisLang)) { ## reset to previous and check

Sys.setLanguage (thisLang)

stopifnot (identical (errMsg (1l + "2"), err))
} # else staying at 'de'

getwd Get or Set Working Directory

Description

getwd returns an absolute filepath representing the current working directory of the R process;
setwd (dir) is used to set the working directory to dir.

gl 259

Usage

getwd ()
setwd (dir)

Arguments

dir A character string: tilde expansion will be done.

Details

See files for how file paths with marked encodings are interpreted.

Value

getwd returns a character string or NULL if the working directory is not available. On Windows
the path returned will use / as the path separator and be encoded in UTF-8. The path will not have
a trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd. It will give an error if it does not succeed (including if it is not implemented).

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

See Also

list.files for the contents of a directory.

normalizePath for a ‘canonical’ path name.

Examples

(WD <- getwd())
if (!is.null (WD)) setwd (WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = nxk, labels = seg_len(n), ordered = FALSE)

260 &rep

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total
length of 1ength.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor ().

Examples

First control, then treatment:

gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep, grepv, grepl, regexpr, gregexpr, regexec and gregexec search for matches
to argument pattern within each element of a character vector: they differ in the format of and
amount of detail in the results.

sub and gsub perform replacement of the first and all matches respectively within each element
of a character vector.

Usage

grep (pattern, x, ignore.case FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)

grepv (pattern, x, ignore.case = FALSE, perl = FALSE, value = TRUE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)

grepl (pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

sub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

grep 261

gsub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexec (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexec (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments
pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible. If a character vector of length
2 or more is supplied, the first element is used with a warning. Missing values
are allowed except for regexpr, gregexpr and regexec.
X, text a character vector where matches are sought, or an object which can be coerced

by as.character to a character vector. Long vectors are supported.
ignore.case logical. if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.
perl logical. Should Perl-compatible regexps be used?
value logical. If FALSE, a vector containing the (integer) indices of the matches

determined by grep is returned, and if TRUE, a vector containing the matching
elements themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

invert logical. If TRUE return indices or values for elements that do not match.

replacement areplacement for the matched pattern in sub and gsub. Coerced to character if
possible. For £ixed = FALSE this can include backreferences "\1" to "\ 9"
to parenthesized subexpressions of pattern. For perl = TRUE only, it can
also contain "\U" or "\L" to convert the rest of the replacement to upper or
lower case and "\E" to end case conversion. If a character vector of length 2 or
more is supplied, the first element is used with a warning. If NA, all elements in
the result corresponding to matches will be set to NA.

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

Each of these functions operates in one of three modes:

1. fixed = TRUE: use exact matching.

262 grep

2. perl = TRUE: use Perl-style regular expressions.

3. fixed = FALSE, perl = FALSE: use POSIX 1003.2 extended regular expressions (the de-
fault).

See the help pages on regular expression for details of the different types of regular expressions.

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be " ").

For regexpr, gregexpr, regexec and gregexec it is an error for pattern to be NA,
otherwise NA is permitted and gives an NA match.

grep and grepv only differ in the default of the value argument.
Both grep and grepl take missing values in x as not matching a non-missing pattern.

The main effect of useBytes = TRUE is to avoid errors/warnings about invalid inputs and spurious
matches in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits
the conversion of inputs with marked encodings, and is forced if any input is found which is marked
as "bytes" (see Encoding).

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

regexpr and gregexpr with perl = TRUE allow Python-style named captures, but not for long
vector inputs.

Invalid inputs in the current locale are warned about up to 5 times.

Caseless matching with perl = TRUE for non-ASCII characters depends on the PCRE library
being compiled with ‘Unicode property support’, which PCRE2 is by default.

Value

grep (value = FALSE) returns a vector of the indices of the elements of x that yielded a match
(or not, for invert = TRUE). This will be an integer vector unless the input is a long vector, when
it will be a double vector.

grep (value = TRUE) returns a character vector containing the selected elements of x (after
coercion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

sub and gsub return a character vector of the same length and with the same attributes as x (after
possible coercion to character). Elements of character vectors x which are not substituted will be
returned unchanged (including any declared encoding if useBytes = FALSE). If useBytes =
FALSE a non-ASCII substituted result will often be in UTF-8 with a marked encoding (e.g., if there
is a UTF-8 input, and in a multibyte locale unless £ ixed = TRUE). Such strings can be re-encoded
by enc2native. If any of the inputs is marked as "bytes", elements of character vectors x
which are substituted will be returned marked as "bytes", but the encoding flag on elements
not substituted is unspecified (it may be the original or "bytes"). If none of the inputs is marked
as "bytes", but useBytes = TRUE is given explicitly, the encoding flag is unspecified even
on the substituted elements (it may be "bytes" or "unknown", possibly invalid in the current
encoding). Mixed use of "bytes" and other marked encodings is discouraged, but if still desired
one may use iconv to re-encode the result e.g. to UTF-8 with suitably substituted invalid bytes.

regexpr returns an integer vector of the same length as text giving the starting position of
the first match or —1 if there is none, with attribute "match.length", an integer vector giv-
ing the length of the matched text (or —1 for no match). The match positions and lengths are
in characters unless useBytes = TRUE is used, when they are in bytes (as they are for ASCII-
only matching: in either case an attribute useBytes with value TRUE is set on the result). If

&rep 263

named capture is used there are further attributes "capture.start", "capture.length"
and "capture.names".

gregexpr returns a list of the same length as text each element of which is of the same form as
the return value for regexpr, except that the starting positions of every (disjoint) match are given.

regexec returns a list of the same length as text each element of which is either —1 if there
is no match, or a sequence of integers with the starting positions of the match and all substrings
corresponding to parenthesized subexpressions of pattern, with attribute "match.length" a
vector giving the lengths of the matches (or —1 for no match). The interpretation of positions and
length and the attributes follows regexpr.

gregexec returns the same as regexec, except that to accommodate multiple matches per ele-
ment of text, the integer sequences for each match are made into columns of a matrix, with one
matrix per element of text with matches.

Where matching failed because of resource limits (especially for per1 = TRUE) this is regarded as
a non-match, usually with a warning.

Warning

The POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-
boundaries (e.g., pattern = "\b"). Use perl = TRUE for such matches (but that may not work
as expected with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will
want to consider the options used. Generally per1 = TRUE will be faster than the default regular
expression engine, and £ixed = TRUE faster still (especially when each pattern is matched only a
few times).

If you are working with texts with non-ASCII characters, which can be easily turned into ASCII
(e.g. by substituting fancy quotes), doing so is likely to improve performance.

If you are working in a single-byte locale (though not common since R 4.2) and have marked UTF-8
strings that are representable in that locale, convert them first as just one UTF-8 string will force all
the matching to be done in Unicode, which attracts a penalty of around 3 x for the default POSIX
1003.2 mode.

While useBytes = TRUE will improve performance further, because the strings will not be
checked before matching and the actual matching will be faster, it can produce unexpected results
so is best avoided. With fixed = TRUE and useBytes = FALSE, optimizations are in place that
take advantage of byte-based matching working for such patterns in UTF-8. With useBytes =
TRUE, character ranges, wildcards, and other regular expression patterns may produce unexpected
results.

PCRE-based matching by default used to put additional effort into ‘studying’ the compiled pat-
tern when x/text has length 10 or more. That study may use the PCRE JIT compiler on plat-
forms where it is available (see pcre_config). As from PCRE2 (PCRE version >= 10.00
as reported by ext SoftVersion), there is no study phase, but the patterns are optimized au-
tomatically when possible, and PCRE JIT is used when enabled. The details are controlled by
options PCRE_study and PCRE_use_JIT. (Some timing comparisons can be seen by run-
ning file ‘tests/PCRE.R’ in the R sources (and perhaps installed).) People working with PCRE
and very long strings can adjust the maximum size of the JIT stack by setting environment vari-
able R_PCRE_JIT_STACK_MAXSIZE before JIT is used to a value between 1 and 1000 in MB:
the default is 64. When JIT is not used with PCRE version < 10.30 (that is with PCRE1 and old
versions of PCRE2), it might also be wise to set the option PCRE_1imit_recursion.

264 grep

Warning

An all too common mis-usage is to pass unnamed arguments which are then matched to one or more
of ignore.case, perl, value, fixed, useBytes and invert. So it is good practice to
name all the arguments (especially as x/text is not the first argument).

Note

Aspects will be platform-dependent as well as locale-dependent: for example the implementation
of character classes (except [:digit:] and [:xdigit:]). One can expect results to be con-
sistent for ASCII inputs and when working in UTF-8 mode (when most platforms will use Unicode
character tables, although those are updated frequently and subject to some degree of interpretation
—is a circled capital letter alphabetic or a symbol?). However, results in 8-bit encodings can differ
considerably between platforms, modes and from the UTF-8 versions.

Source

The C code for POSIX-style regular expression matching has changed over the years. As from R
2.10.0 (Oct 2009) the TRE library of Ville Laurikari (https://github.com/laurikari/
tre) is used. The POSIX standard does give some room for interpretation, especially in the han-
dling of invalid regular expressions and the collation of character ranges, so the results will have
changed slightly over the years.

For Perl-style matching PCRE2 or PCRE (https://www.pcre.orqg)is used: again the results
may depend (slightly) on the version of PCRE in use.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

regmatches for extracting matched substrings based on the results of regexpr, gregexpr
and regexec.

glob2rx to turn wildcard matches into regular expressions.
agrep for approximate matching.

charmatch, pmatch for partial matching, mat ch for matching to whole strings, startsWith
for matching of initial parts of strings.

tolower, toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRaw for matching raw vectors.

Options PCRE_1imit_recursion, PCRE_study and PCRE_use_JIT.

extSoftVersion for the versions of regex and PCRE libraries in use, pcre_conf ig for more
details for PCRE.

https://github.com/laurikari/tre
https://github.com/laurikari/tre
https://www.pcre.org

&rep 265

Examples

grep ("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if (length (i <- grep("foo", txt)))

cat ("'foo' appears at least once in\n\t", txt, "\n")
i # 2 and 4
txt[1]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <= c("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",
wr, "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")

(1 <= grep("[gul", txt)) # indices

stopifnot (txt[i] == grep("[gul", txt, value = TRUE))

Note that for some implementations character ranges are

locale-dependent (but not currently). Then [b-e] in locales such as
en_US may include B as the collation order is aAbBcCdDe

(ot <= sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]l",".", txt)]l#- gsub does "global" substitution

In caseless matching, ranges include both cases:

a <- grep("[b-el", txt, value = TRUE)

b <- grep("[b-e]", txt, ignore.case = TRUE, value = TRUE)

setdiff (b, a)

txt [gsub("g","#", txt) !=
gsub ("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr ("en", txt)
gregexpr ("e", txt)
Using grepl () for filtering

Find functions with argument names matching "warn":
findArgs <- function(env, pattern) {

nms <- ls(envir = as.environment (env))
nms <- nms[is.na(match(nms, c("F","T")))] # <-- work around "checking hack"
aa <- sapply(nms, function(.) { o <- get(.)

if (is.function (o)) names (formals (o)) })
iw <- sapply(aa, function(a) any(grepl (pattern, a, ignore.case=TRUE)))
aaliw]

}

findArgs ("package:base", "warn")

trim trailing white space

str <- "Now is the time "

sub (" +$", "", str) ## spaces only

what 1s considered 'white space' depends on the locale.

266 &rep

sub("[[:space:]]+$", "", str) ## white space, POSIX-style
what PCRE considered white space changed in version 8.34: see ?regex
sub ("\\s+$", "", str, perl = TRUE) ## PCRE-style white space

capitalizing

txt <- "a test of capitalizing"
gsub (" (\\w) (\N\wx) ", "\NUNNINNLN\\2", txt, perl=TRUE)
gsub ("\\b (\\w) ", "N\NA\UNAL", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia"
gsub (" (\\w) (\\w*) (\\w) ", "\NU\N\NINAEN\2\\U\\3", txt2, perl=TRUE)
sub (" (\\w) (\\wx) (\\w) ", "\\NU\\IN\EA\N2\\U\\3", txt2, perl=TRUE)

named capture

notables <- ¢ (" Ben Franklin and Jefferson Davis",
"\tMillard Fillmore")

name groups 'first' and 'last'

name.rex <— "(?<first>[[:upper:]][[:lower:]]+) (?<last>[[:upper:]][[:lower:]]+)"
(parsed <- regexpr (name.rex, notables, perl = TRUE))
gregexpr (name.rex, notables, perl = TRUE) [[2]]

parse.one <- function(res, result) {
m <- do.call(rbind, lapply(seqg_along(res), function(i) {

if (result[i] == -1) return(("")
st <- attr(result, "capture.start")[i,]
substring(res[i], st, st + attr(result, "capture.length")[i,] - 1)

1))
colnames (m) <- attr (result, "capture.names")
m

t

parse.one (notables, parsed)

Decompose a URL into its components.

Example by LT (http://www.cs.uiowa.edu/~luke/R/regexp.html) .

x <— "http://stat.umn.edu:80/xyz"

m <- regexec ("N (([":]1+)://)2([":/1+) (: ([0=-9]1+))2(/.*)", x)

m

regmatches (x, m)

Element 3 is the protocol, 4 is the host, 6 is the port, and 7

is the path. We can use this to make a function for extracting the
parts of a URL:

URL_parts <- function(x) {

m <— regexec ("~ (([":14)://)2([":/]1+) (: ([0-914))2(/.%x)", Xx)
parts <- do.call (rbind,
lapply (regmatches(x, m), ~ [, c(3L, 4L, 6L, 7L)))
colnames (parts) <- c("protocol", "host", "port", "path")
parts

}
URL_parts (x)

gregexec () may match multiple times within a single string.
pattern <- "([[:alpha:]]+) ([[:digit:]]+)"

s <— "Test: Al BC23 DEF456"

m <- gregexec (pattern, s)

m

regmatches (s, m)

Before gregexec() was implemented, one could emulate it by running

grepRaw

regexec()

267

on the regmatches obtained via gregexpr(). E.g.:

lapply (regmatches (s, gregexpr (pattern, s)),
function(e) regmatches (e, regexec(pattern, e)))

grepRaw

Pattern Matching for Raw Vectors

Description

grepRaw searches for substring pattern matches within a raw vector x.

Usage

grepRaw (pattern, x, offset = 1L, ignore.case = FALSE,
value = FALSE, fixed = FALSE, all = FALSE, invert = FALSE)

Arguments

pattern

ignore.case

offset
value
fixed

all

invert

Details

raw vector containing a regular expression (or fixed pattern for £ i xed = TRUE)
to be matched in the given raw vector. Coerced by charToRaw to a character
string if possible.

a raw vector where matches are sought, or an object which can be coerced by
charToRaw to a raw vector. Long vectors are not supported.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

an integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so "~ " will match
there.

logical. Determines the return value: see ‘Value’.
logical. If TRUE, pattern is a pattern to be matched as is.
logical. If TRUE all matches are returned, otherwise just the first one.

logical. If TRUE return indices or values for elements that do not match. Ignored
(with a warning) unless value = TRUE.

Unlike grep, seeks matching patterns within the raw vector x . This has implications especially
inthe all = TRUE case, e.g., patterns matching empty strings are inherently infinite and thus may
lead to unexpected results.

The argument invert is interpreted as asking to return the complement of the match, which is
only meaningful for value = TRUE. Argument of fset determines the start of the search, not of
the complement. Note that invert = TRUE with all = TRUE will split x into pieces delimited by
the pattern including leading and trailing empty strings (consequently the use of regular expressions
with "~" or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as f ixed = TRUE with value = TRUE are supported but
are less meaningful.

268 groupGeneric

Value

grepRaw (value = FALSE) returns an integer vector of the offsets at which matches have oc-
curred. If a11 = FALSE then it will be either of length zero (no match) or length one (first matching
position).

grepRaw (value = TRUE, all = FALSE) returns a raw vector which is either empty (no
match) or the matched part of x.

grepRaw (value = TRUE, all = TRUE) returns a (potentially empty) list of raw vectors cor-
responding to the matched parts.

Warning

An all too common mis-usage is to pass unnamed arguments which are then matched to one or
more of ignore.case, value, fixed, all or invert. So itis good practice to name all the
arguments.

Source
The TRE library of Ville Laurikari (https://github.com/laurikari/tre/) is used ex-
cept for fixed = TRUE.

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

Examples
grepRaw ("no match", "textText") # integer(0): no match
grepRaw ("adf", "adadfadfdfadadf") # 3 - the first match
grepRaw ("adf", "adadfadfdfadadf", all=TRUE, fixed=TRUE)
[1]1] 3 6 13 —-- three matches
groupGeneric S3 Group Generic Functions
Description

Group generic methods can be defined for the following pre-specified groups of functions, Math,
Ops, matrixOps, Summary and Complex. (There are no objects of these names in base R, but
there are in the methods package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math (x, ...)

Ops (el, e2)

Complex (z)

Summary (..., na.rm = FALSE)

matrixOps (x, V)

https://github.com/laurikari/tre/

groupGeneric 269

Arguments

X,vy,z,el,e2 objects.

further arguments passed to methods.

na.rm logical: should missing values be removed?
Details
There are five groups for which S3 methods can be written, namely the "Math", "Ops",

"Summary", "matrixOps", and "Complex" groups. These are not R objects in base R, but
methods can be supplied for them and base R contains factor, data.frame and difftime
methods for the first three groups. (There is also a ordered method for Ops, POSIXt and Date
methods for Math and Ops, package_version methods for Ops and Summary, as well as a
t s method for Ops in package stats.)

1. Group "Math™":

* abs, sign, sqgrt,
floor,ceiling, trunc,
round, signif

* exp, log, expml, loglp,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

¢ lgamma, gamma, digamma, t rigamma
e cumsum, cumprod, cummax, cummain

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and t runc accepts one or more.

. Group "Ops™":
Y "+"’ "_"’ "*"’ "/"’ "/\"’ "%%"’ "%/%"
° "&"’ "l", "!"
° "::"’ n !:"’ "<"’ "<:", ">:"’ ">"

This group contains both binary and unary operators (+, — and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found for
both, it is used. If different methods are found, then the generic chooseOpsMethod ()

is called to pick the appropriate method. (See ?chooseOpsMethod for details). If
chooseOpsMethod () does not resolve the method, then there is a warning about ‘incom-
patible methods’: in that case or if no method is found for either argument the internal method
is used.

Note that the data . frame methods for the comparison ("Compare": ==, <, ...) and
logic ("Logic": & | and !) operators return a logical mat rix instead of a data frame, for
convenience and back compatibility.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "matrixOps™":

270 groupGeneric

This group currently contains the matrix multiply %+% binary operator only, where at least
crossprod () and tcrossprod () are meant to follow. Members of the group have the
same dispatch semantics (using both arguments) as the Ops group.

4. Group "Summary":
e all, any
* sum, prod
* min, max
* range
Members of this group dispatch on the first argument supplied.

Note that the data.frame methods for the "Summary" and "Math" groups require
“numeric-alike” columns x, i.e., fulfilling

is.numeric(x) || is.logical(x) || is.complex (x)
5. Group "Complex":
e Arg, Conij, Im, Mod, Re
Members of this group dispatch on z.
Note that a method will be used for one of these groups or one of its members only if it corresponds

toa "class" attribute, as the internal code dispatches on c1dClass and not on class. This is
for efficiency: having to dispatch on, say, Ops . integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.

The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

* For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is " ".)

* Object .Group records the group used for dispatch (if a specific method is used this is " ").

Note
Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.
References
Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.
See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

grouping 271

Examples

require (utils)

d.fr <- data.frame(x = 1:9, y = stats::rnorm(9))
class(l + d.fr) == "data.frame" ##-—- add to d.f.
methods ("Math")
methods ("Ops")
methods ("Summary")
methods ("Complex") # none in base R

grouping Grouping Permutation

Description

grouping returns a permutation which rearranges its first argument such that identical values are
adjacent to each other. Also returned as attributes are the group-wise partitioning and the maximum

group size.
Usage
grouping (...)
Arguments
a sequence of numeric, character or logical vectors, all of the same length, or a
classed R object.
Details

The function partially sorts the elements so that identical values are adjacent. NA values come last.
This is guaranteed to be stable, so ties are preserved, and if the data are already grouped/sorted, the
grouping is unchanged. This is useful for aggregation and is particularly fast for character vectors.

Under the covers, the "radix" method of order is used, and the same caveats apply, including
restrictions on character encodings and lack of support for long vectors (those with 23! or more
elements). Real-valued numbers are slightly rounded to account for numerical imprecision.

Like order, for a classed R object the grouping is based on the result of xt frm.

Value

An object of class "grouping", the representation of which should be considered experimental
and subject to change. It is an integer vector with two attributes:

ends subscripts in the result corresponding to the last member of each group
maxgrpn the maximum group size
See Also

order, xt frm.

272 gzcon

Examples

(ii <= grouping(x <- c(1, 1, 3:1, 1:4, 3), y <= c(9, 9:1), z <= c(2, 1:9)))
6 5 2 1 7 410 8 3 9
rbind(x, vy, z)[, ii]

gzcon (De)compress 1/0 Through Connections

Description
gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon (con, level = 6, allowNonCompressed = TRUE, text = FALSE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

text logical. Should the connection be text-oriented? This is distinct from the mode
of the connection (must always be binary). If TRUE, pushBack works on the
connection, otherwise readBin and friends apply.

Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open = "w". Use a writable rawConnection to compress
data into a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection. For this reason, the new connection needs to be closed explicitly.

Value

An object inheriting from class "connection™. This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

See Also

gzfile

hexmode 273

Examples

Uncompress a data file from a URL

z <—- gzcon (url ("https://www.stats.ox.ac.uk/pub/datasets/csb/chl2.dat.gz"))
read.table can only read from a text-mode connection.

raw <- textConnection (readLines (z))

close(z)

dat <- read.table (raw)

close (raw)

dat[1l:4, 1]

gzfile and gzcon can inter-work.

Of course here one would use gzfile, but file() can be replaced by

any other connection generator.

zzfil <- tempfile(fileext = ".gz")

zz <- gzfile(zzfil, "w")

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readlLines (zz <- gzcon(file(zzfil, "rb")))
close(zz)

unlink (zzfil)

zz£fi12 <- tempfile(fileext = ".gz")
zz <—- gzcon(file(zzfil2, "wb"))
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readLines (zz <- gzfile(zzfil2))
close(zz)

unlink (zz£fil2)

hexmode Integer Numbers Displayed in Hexadecimal

Description

Integers which are displayed in hexadecimal (short ‘hex’) format, with as many digits as are needed
to display the largest, using leading zeroes as necessary.

Arithmetic works as for integers, and non-integer valued mathematical functions typically work by
truncating the result to integer.

Usage
as.hexmode (x)

S3 method for class 'hexmode'
as.character (x, keepStr = FALSE, ...)

S3 method for class 'hexmode'
format (x, width = NULL, upper.case = FALSE, ...)

S3 method for class 'hexmode'
print(x, ...)

274

Arguments

X

keepStr

width

hexmode

an object, for the methods inheriting from class "hexmode".

a logical indicating that names and dimensions should be kept; set TRUE for
back compatibility, if needed.

NULL or a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.

upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-

Details

fault).

further arguments passed to or from other methods.

Class "hexmode" consists of integer vectors with that class attribute, used primarily to ensure that
they are printed in hex. Subsetting ([) works too, as do arithmetic or other mathematical operations,
albeit truncated to integer.

as.character (x) drops all attributes (unless when keepStr=TRUE where it keeps,
dim, dimnames and names for back compatibility) and converts each entry individually, hence
with no leading zeroes, whereas in format (), when width = NULL (the default), the output is
padded with leading zeroes to the smallest width needed for all the non-missing elements.

as.hexmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only 0—-9, a—f, A-F (or are NA) to class "hexmode".

There is a

! method and methods for | and &: these recycle their arguments to the length of the

longer and then apply the operators bitwise to each element.

See Also

octmode

, sprintf for other options in converting integers to hex, strtoi to convert hex

strings to integers.

Examples

i <- as.hexmode ("7fffffff")
i; class (i)
identical (as.integer (i), .Machine$integer.max)

hm <- as.hexmode(c(NA, 1)); hm
as.integer (hm)

Xm <- as.hexmode (1:16)
Xm # print()s via format ()
stopifnot (nchar (format (Xm)) == 2)

Xm[-16]

*nox leading zeroes!

stopifnot (format (Xm[-16]) == c(1:9, letters[l:6]))

Integer arithmetic (remaining "hexmode") :

16%Xm
Xm” 2
—Xm
(fac <-

factorial (Xm[1:121)) # !1, '2, '3, !4 .. in hexadecimals

as.integer (fac) # indeed the same as factorial(l:12)

Hyperbolic 275

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

Arguments

X a numeric or complex vector

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin et seq, and agree with
those defined in Abramowitz & Stegun, figure 4.7, page 86. The behaviour actually on the cuts fol-
lows the C99 standard which requires continuity coming round the endpoint in a counter-clockwise
direction.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh () for numeric x.

276 iconv

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-

ternationalization’.
Usage
iconv(x, from = "", to = "", sub = NA, mark = TRUE, toRaw = FALSE)

iconvlist ()

Arguments
X a character vector, or an object to be converted to a character vector by
as.character, or a list with NULL and raw elements as returned by
iconv (toRaw = TRUE).
from a character string describing the current encoding.
to a character string describing the target encoding.
sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is "<xx>" with the hex code of the byte. If "Unicode" and
converting from UTF-8, the Unicode point in the form "<U+xxxx>", or if
c99, a C99-style escape "\uxxxx". (For points in a ‘supplementary plane’,
"\Uxxxxxxxx" is used, with zero-padding)
mark logical, for expert use. Should encodings be marked?
toRaw logical. Should a list of raw vectors be returned rather than a character vector?
Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latinl" and "UTF-8". Generally case is
ignored when specifying an encoding.

On most platforms i conv1ist provides an alphabetical list of the supported encodings (including
aliases). On ‘musl’ (as used by Alpine Linux and other lightweight Linux distributions) the listing
is incomplete. On others, the information is on the man page for iconv (5) or elsewhere in the
man pages (but beware that the system command i conv may not support the same set of encodings
as the C functions R calls). Unfortunately, the names are rarely supported across all platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA (or NULL for toRaw = TRUE) unless
sub is specified.

Most versions of i conv will allow transliteration by appending ‘//TRANSLIT’ to the to encod-
ing: see the examples.

Encoding "ASCII" isaccepted, and on most systems "C" and "POSIX" are synonyms for ASCII.
Where "ASCII//TRANSLIT" is unsupported by the OS, "ASCII" is used with sub = "c99"
if from UTF-8, else sub = "2". (However, musl’s version of "ASCII" substitutes *.)

iconv 277

Elements of x with a declared encoding (UTF-8 or latinl, see Encoding) are converted from that
encoding if from = "", otherwise they are taken as being in the encoding specified by from.

Note that implementations of iconv typically do not do much validity checking and will often
mis-convert inputs which are invalid in encoding from.

If sub ="Unicode" or sub = "c99" is used for a non-UTF-8 input it is the same as sub =
"byte n .

Value

If toRaw = FALSE (the default), the value is a character vector of the same length and the same
attributes as x (after conversion to a character vector). If conversion fails for an element that element
of the result is set to NA__character_. (NB: whether conversion fails is implementation-specific.)
NA_character_ inputs give NA_character_ outputs.

If mark = TRUE (the default) the elements of the result have a declared encoding if to is
"latinl" or "UTF-8", or if to ="" and the current locale’s encoding is detected as Latin-
1 (or its superset CP1252 on Windows) or UTF-8.

If toRaw = TRUE, the value is a list of the same length and the same attributes as x whose elements
are either NULL (if conversion fails or the input was NA_character_) or a raw vector.

For iconvlist (), a character vector (typically of a few hundred elements) of known encoding
names.

Implementation Details

There are three main implementations of iconv in use. Linux’s most common C runtime,
‘glibc’, contains one. Several platforms supply versions or emulations of GNU ‘libiconv’,
including previous versions of macOS and FreeBSD, in some cases with additional encodings. On
Windows we use a version of Yukihiro Nakadaira’s ‘win_iconv’, which is based on Windows’
codepages. (We have added many encoding names for compatibility with other systems.) All three
have iconvlist, ignore case in encoding names and support ‘//TRANSLIT’ (but with different
results, and for ‘win_iconv’ currently a ‘best fit’ strategy is used except for to = "ASCII").

The macOS 14 implementation is attributed to the ‘Citrus Project’: the Apple headers declare it
as ‘compatible’ with GNU ‘libiconv’ 1.11 from 2006. However, it differs in significant ways
including using transliteration for conversions which cannot be represented exactly in the target
encoding. (It seems this implementation is also used in recent versions of FreeBSD. Earlier versions
of macOS used GNU ‘libiconv’ 1.11 and some CRAN builds still do.) For a failing conversion
macOS 14 generally translated character(s) to 2 but 14.1 gives an error (so an NA result in R).

Most commercial Unixes contain an implementation of iconv but none we have encountered have
supported the encoding names we need: the ‘R Installation and Administration’ manual recom-
mended installing GNU ‘libiconv’ on Solaris and AIX.

Some Linux distributions use ‘mus1’ as their C runtime. This is less comprehensive than ‘glibc’:
it does not support ‘//TRANSLIT’ but does inexact conversions (currently using ‘x”).

There are other implementations, e.g. NetBSD has used one from the Citrus project (which does
not support ‘//TRANSLIT’) and there is an older FreeBSD port.

Note that you cannot rely on invalid inputs being detected, especially for to = "ASCII" where
some implementations allow 8-bit characters and pass them through unchanged or with translitera-
tion or substitution.

Some of the implementations have interesting extra encodings: for example GNU ‘libiconv’
and macOS 14 allow to = "C99" to use ‘\uxxxx’ escapes (or if needed ‘\Uuxxxxxxxx’) for
non-ASCII characters.

278 iconv

Byte Order Marks

most commonly known as ‘BOMs’.

Encodings using character units which are more than one byte in size can be written on a file in
either big-endian or little-endian order: this applies most commonly to UCS-2, UTF-16 and UTF-
32/UCS-4 encodings. Some systems will write the Unicode character U+FEFF at the beginning of
a file in these encodings and perhaps also in UTF-8. In that usage the character is known as a BOM,
and should be handled during input (see the ‘Encodings’ section under connection: re-encoded
connections have some special handling of BOMs). The rest of this section applies when this has
not been done so x starts with a BOM.

Implementations will generally interpret a BOM for from given as one of "UCS-2", "UTF-16"
and "UTF-32". Implementations differ in how they treat BOMs in x in other from encodings:
they may be discarded, returned as character U+FEFF or regarded as invalid.

Note

The most portable name for the ISO 8859-15 encoding, commonly known as ‘Latin 9’,
is "1s0885915": most platforms support both "latin-9" and "latin9" but GNU
‘libiconv’ does not support the latter.

Encoding names "utf8", "mac" and "macroman" are not portable. "utf8" is con-
verted to "UTF—-8" for from and to by iconv, but not for e.g. fileEncoding arguments.
"macintosh" is the official (and most widely supported) name for ‘Mac Roman’ (https:
//en.wikipedia.org/wiki/Mac_OS_Roman).

Using sub substitutes each non-convertible byte in the input, so when converting from UTF-8 a
non-convertible character may be replaced by two or more bytes. Using sub = "c99" or sub =
"Unicode" will be clearer.

See Also

localeToCharset, file.

Examples

In principle, as not all systems have iconvlist
try(utils::head(iconvlist (), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

End (Not run)

Both x below are in latinl and will only display correctly in a
locale that can represent and display latinl.

X <— "fran\xE7ais"
Encoding(x) <- "latinl"
X

charToRaw (xx <—- iconv(x, "latinl", "UTF-8"))
XX

The results in the comments are those from glibc and GNU libiconv
iconv(x, "latinl", "ASCII") # NA
iconv(x, "latinl", "ASCII", "2") # "fran?ais"

https://en.wikipedia.org/wiki/Mac_OS_Roman
https://en.wikipedia.org/wiki/Mac_OS_Roman

icuSetCollate 279

iconv(x, "latinl"™, "ASCII", "") "franais"
XI

(#

iconv ("latinl", "ASCII", "byte") # "fran<e7>ais"
iconv (xx, "UTF-8", "ASCII", "Unicode")# "fran<U+00E7>ais"
(xx, "UTF-8", "ASCII", "c99") # "fran\\uOOe7ais"

iconv

Extracts from old R help files (they are nowadays in UTF-8)
x <— c("Ekstr\xf8m", "J\xfé6reskog", "bi\xdfchen Z\xfcrcher")

Encoding(x) <- "latinl"
X
try(iconv(x, "latinl", "ASCII//TRANSLIT")) # platform-dependent

glibc gives "Ekstroem" "Joreskog" "bisschen Zurcher"

macOS 14 gives "Ekstrom" "J\"oreskog" "bisschen Z\"urcher"
musl gives "Ekstrxm" "Jxreskog" "bixchen Zxrcher"

iconv(x, "latinl", "ASCII", sub = "byte")

and for Windows' 'Unicode'
str(xx <- iconv(x, "latinl", "UTF-16LE", toRaw = TRUE))
iconv (xx, "UTF-16LE", "UTF-8")

emoji <— "\U0001fe04"
iconv(emoji,, "latinl", sub

"Unicode") # "<U+1F604>"

iconv(emoji,, "latinl", sub = "c99")
icuSetCollate Setup Collation by ICU
Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

icuGetCollate (type = c("actual", "valid"))

Arguments
ce named arguments, see ‘Details’.
type a character string: either the "actual™" locale in use for collation, or the most
specific locale which would be "valid". Can be abbreviated.
Details

Optionally, R can be built to collate character strings by ICU (https://icu.unicode.org/).
For such systems, 1cuSetCollate can be used to tune the way collation is done. On other builds
calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the language and country whose collation
rules are to be used. If present, this should be the first argument.

https://icu.unicode.org/

280 icuSetCollate

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters
to be sorted first. The default is usually lower-case first, but not in all languages (not under the
default settings for Danish, for example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted"
(quaternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical".

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default".

normalization: Should strings be normalized? Possible values are "on" and "off" (de-
fault). This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "of£" (default).

hiragana_gquaternary: Possible values "on" (sort Hiragana first at quaternary level) and
" O f f " .

Only the first three are likely to be of interest except to those with a detailed understanding of
collation and specialized requirements.

Some special values are accepted for locale:

"none": ICU is not used for collation: the OS’s collation services are used instead.

"ASCII": ICU is not used for collation: the C function strcmp is used instead, which should
sort byte-by-byte in (unsigned) numerical order.

"default": obtains the locale from the OS as is done at the start of the session (except on
Windows). If environment variable R_ICU_LOCALE is set to a non-empty value, its value
is used rather than consulting the OS, unless environment variable LC_ALL is set to 'C’ (or
unset but LC_COLLATE is set to "C’).

"o "root": the ‘root’ collation: see https://www.unicode.org/reports/tr35/
tr35-collation.html#Root_Collation.

For the specifications of ‘real’ ICU locales, see https://unicode-org.github.io/
icu/userguide/locale/. Note that ICU does not report that a locale is not supported,
but falls back to its idea of ‘best fit’ (which could be rather different and is reported by
icuGetCollate ("actual"), often "root"). Most English locales fall back to "root™"
as although e.g. "en_GB" is a valid locale (at least on some platforms), it contains no special rules
for collation. Note that "C" is not a supported ICU locale and hence R_ICU_LOCALE should
never be setto "C".

Some examples are case_level = "on", strength = "primary" to ignore accent differ-
ences and alternate_handling = "shifted" toignore space and punctuation characters.

Initially ICU will not be used for collation if the OS is set to use the C locale for collation and
R_ICU_LOCALE is not set. Once this function is called with a value for 1ocale, ICU will be used
until it is called again with 1ocale = "none". ICU will not be used once Sys.setlocale is
called with a "C" value for LC_ALL or LC_COLLATE, evenif R_ICU_LOCALE is set. ICU will be
used again honoring R_ICU_LOCALE once Sys.setlocale is called to set a different collation
order. Environment variables LC_ALL (or LC_COLLATE) take precedence over R_ICU_LOCALE
if and only if they are set to *C’. Due to the interaction with other ways of setting the collation order,
R_ICU_LOCALE should be used with care and only when needed.

All customizations are reset to the default for the locale if 1ocale is specified: the collation engine
is reset if the OS collation locate category is changed by Sys.setlocale.

https://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
https://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
https://unicode-org.github.io/icu/userguide/locale/
https://unicode-org.github.io/icu/userguide/locale/

identical 281

Value

For icuGetCollate, acharacter string describing the ICU locale in use (which may be reported
as "ICU not in use™"). The ‘actual’ locale may be simpler than the requested locale: for example
"da" rather than "da_DK": English locales are likely to report "root".

Note

Except on Windows, ICU is used by default wherever it is available. As it works internally in
UTF-8, it will be most efficient in UTF-8 locales.

On Windows, R is normally built including ICU, but it will only be used if environment vari-
able R_TICU_LOCALE had been set when R is started or after icuSetCollate is called
to select the locale (as ICU and Windows differ in their idea of locale names). Note that
icuSetCollate (locale = "default") should work reasonably well, but finds the system
default ignoring environment variables such as LC_COLLATE.

See Also

Comparison, sort.
capabilities for whether ICU is available; ext SoftVersion for its version.

The ICU user guide chapter on collation (https://unicode-org.github.io/icu/
userguide/collation/).

Examples

These examples depend on having ICU available, and on the locale.
As we don't know the current settings, we can only reset to the default.
if (capabilities ("ICU")) withAutoprint ({

icuGetCollate ()

icuGetCollate ("valid")

x <— c("Aarhus", "aarhus", "safe", "test", "Zoo")

sort (x)

icuSetCollate (case_first = "upper"); sort(x)

icuSetCollate (case_first

"lower"); sort (x)

Danish collates upper-case-first and with 'aa' as a single letter
icuSetCollate (locale = "da_DK", case_first = "default"); sort (x)

Estonian collates Z between S and T

icuSetCollate (locale "et_EE"); sort (x)

icuSetCollate (locale = "default"); icuGetCollate("valid")
)
identical Test Objects for Exact Equality
Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

https://unicode-org.github.io/icu/userguide/collation/
https://unicode-org.github.io/icu/userguide/collation/

282 identical

Usage

identical (x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE,
ignore.bytecode = TRUE, ignore.environment = FALSE,
ignore.srcref = TRUE, extptr.as.ref = FALSE)

Arguments
X,y any R objects.
num.eq logical indicating if (double and complex non-NA) numbers should be com-
pared using == (‘equal’), or by bitwise comparison. The latter (non-default)
differentiates between —0 and +0.
single.NA logical indicating if there is conceptually just one numeric NA and one NaN;

single.NA = FALSE differentiates bit patterns.
attrib.as.set
logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to slots of S4 objects. It
may well be too strict to set attrib.as.set = FALSE.
ignore.bytecode
logical indicating if byte code should be ignored when comparing closures.
ignore.environment
logical indicating if their environments should be ignored when comparing clo-
sures.
ignore.srcref
logical indicating if their "srcref" attributes should be ignored when com-
paring closures.
extptr.as.ref
logical indicating whether external pointer objects should be compared as refer-
ence objects and considered identical only if they are the same object in mem-
ory. By default, external pointers are considered identical if the addresses they
contain are identical.

Details

A call to identical is the way to test exact equality in 1 f and while statements, as well as in
logical expressions that use && or | |. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or ! =, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them was not, you will not
get a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case,
the expression 1 f (x ==y) won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaN as different from NA_real_, but all
NaNs are equal (and all NA of the same type are equal).

identical 283

Character strings (except those in marked encoding "bytes™") are regarded as identical even if
they are in different marked encodings but would agree when translated to UTF-8. A character
string in marked encoding "bytes" is only regarded as identical to a character string in the same
encoding and with the same content.

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

If ignore.bytecode is true (the default), the compiled bytecode of a function (see cmpfun)
will be ignored in the comparison. If it is false, functions will compare equal only if they are copies
of the same compiled object (or both are uncompiled). To check whether two different compiles are
equal, you should compare the results of disassemble ().

You almost never want to use identical on datetimes of class "POSIX1t": not only can differ-
ent times in the different time zones represent the same time and time zones have multiple names,
but several of the components are optional.

Note that the strictest test for equality is

identical (x, v,
num.eq = FALSE, single.NA = FALSE, attrib.as.set = FALSE,
ignore.bytecode = FALSE, ignore.environment = FALSE,
ignore.srcref = FALSE, extptr.as.ref = TRUE)

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)
John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison and Logic for element-
wise comparisons.

Examples
identical (1, NULL) ## FALSE -- don't try this with ==
identical (1, 1.) ## TRUE in R (both are stored as doubles)

identical (1, as.integer(l)) ## FALSE, stored as different types

x <= 1.0; y <= 0.99999999999

how to test for object equality allowing for numeric fuzz

(E <— all.equal(x, vy))

identical (TRUE, E)

isTRUE (E) # alternative test

If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects
identical (.GlobalEnv, environment ())

284 identity

#HE ——————— Pickyness Flags : —————————————————————————————

the infamous example:

identical (0., -0.) # TRUE, i.e. not differentiated
identical (0., -0., num.eq = FALSE)

similar:

identical (NaN, -NaN) # TRUE

identical (NaN, -NaN, single.NA = FALSE) # differ on bit-level

For functions ("closure"s): ————————————————————————————
#HHE s

f <- function(x) x

f

g <- compiler::cmpfun (f)

g

identical (£, g) # TRUE, as bytecode is ignored by default

identical (f, g, ignore.bytecode=FALSE) # FALSE: bytecode differs

GLM families contain several functions, some of which share an environment:
pl <- poisson() ; p2 <- poisson()

identical (pl, p2) # FALSE

identical (pl, p2, ignore.environment=TRUE) # TRUE

in interactive use, the 'keep.source' option is typically true:

op <- options (keep.source = TRUE) # and so, these have differing "srcref"
f1 <- function() {}

f2 <- function () {}

identical (fl, f2)# ignore.srcref= TRUE : TRUE

identical (f1,f2, ignore.srcref=FALSE)# FALSE

options (op) # revert to previous state

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity (x)

Arguments

x an R object.

See Also

diag creates diagonal matrices, including identity ones.

ifelse 285

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test.
no return values for false elements of test.
Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see o1dClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as
(tmp <- yes; tmp[l!test] <- no[!test]; tmp)

, possibly extended to handle missing values in test.

Further note that if (test) yes else no is much more efficient and often much prefer-
able to ifelse (test, yes, no) whenever test is a simple true/false result, i.e., when
length (test) ==

The srcref attribute of functions is handled specially: if test is a simple true result and yes
evaluates to a function with srcref attribute, i felse returns yes including its attribute (the
same applies to a false test and no argument). This functionality is only for backwards compati-
bility, the form i f (test) yes else no should be used whenever yes and no are functions.

286 integer

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
if.

Examples

X <—= c(6:-4)
sgrt (x) #- gives warning
sgrt (ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !

ifelse(x >= 0, sqgrt(x), NA)

ifelse() strips attributes
This is important when working with Dates and factors

x <- seqg(as.Date("2000-02-29"), as.Date("2004-10-04"), by = "1 month")

has many "yyyy-mm-29", but a few "yyyy-03-01" in the non-leap years

y <- ifelse(as.POSIX1lt (x)Smday == 29, x, NA)

head(y) # not what you expected ... ==> need restore the class attribute:
class (y) <- class(x)

Y

This is a (not atypical) case where it is better s*not* to use ifelse(),
but rather the more efficient and still clear:

y2 <- x
y2[as.POSIX1lt (x)$Smday != 29] <- NA
which gives the same as ifelse()+class () hack:

stopifnot (identical (y2, vy))

example of different return modes (and 'test' alone determining length) :
yes <- 1:3

no <- pi~(1l:4)

utils::str(ifelse(NA, yes, no)) # logical, length 1

utils::str(ifelse (TRUE, yes, no)) # integer, length 1

utils::str(ifelse (FALSE, yes, no)) # double, length 1

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer (length = 0)
as.integer (x,)
is.integer (x)

integer 287

Arguments
length a non-negative integer specifying the desired length. Double values will be co-
erced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about +2 x 10%: doubles can hold much larger integers
exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to 0.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e., as.integer (x) equals trunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with 0x or
0X) can be converted, as well as any allowed by the platform for real numbers. Like as.vector
it strips attributes including names. (To ensure that an object x is of integer type without stripping
attributes, use storage .mode (x) <- "integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not, unless it is a factor when it returns FALSE.

Note
is.integer (x) does not test if x contains integer numbers! For that, use round, as in the
function is.wholenumber (x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and f£loor on that help page) to convert to integral values.

Examples

as.integer () truncates:
X <— pi * c(-1:1, 10)
as.integer (x)

is.integer(l) # is FALSE !

288 interaction

is.wholenumber <-
function(x, tol = .MachineS$double.eps”0.5) abs (x - round(x)) < tol
is.wholenumber (1) # is TRUE
(x <= seqg(l, 5, by = 0.5))
is.wholenumber(x) #-—> TRUE FALSE TRUE

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when 1lex . order = FALSE, the levels are ordered so the level of the first factor varies
fastest, then the second and so on. This is the reverse of lexicographic ordering (which you can get
by lex.order = TRUE), and differs from :. (It is done this way for compatibility with S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor; : where f:qgis similar to interaction (f, g, sep=":") when f and g are fac-
tors.

interactive 289

Examples
a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)

interaction(a, b, s, sep = ":")
stopifnot (identical(a:s,
interaction(a, s, sep = ":", lex.order = TRUE)),
identical(a:s:b,
interaction(a, s, b, sep = ":", lex.order = TRUE)))

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive ()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal
(via Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to a
(pseudo-)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options
‘——interactive’ (Unix) and ‘-—ess’ (Windows, Rterm. exe) override the default assump-
tion. (On a Unix-alike, whether the readl ine command-line editor is used is not overridden by
‘——interactive’))

Embedded uses of R can set a session to be interactive or not.
Internally, whether a session is interactive determines
e how some errors are handled and reported, eg. see stop and
options ("showWarnCalls").

 whether one of ‘--save’, ‘——no-save’ or ‘-—vanilla’ is required, and if R ever asks
whether to save the workspace.

* the choice of default graphics device launched when needed and by dev.new: see
options ("device")

» whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive () : for example help, debugger and
install.packages do.

Note

This is a primitive function.

290 InternalMethods

See Also

source, .First

Examples
.First <- function() if (interactive()) x11()
Internal Call an Internal Function
Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal (call)

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:
OGS, [<= [1<, $<,

length, length<-, lengths, dimnames, dimnames<-, dim, dim<-, names, names<-,
levels<—, @, @<—,

c,unlist, cbind, rbind,

as.character, as.complex, as.double, as.integer, as.logical, as.raw,
as.vector, as.call, as.environment is.array, is.matrix, is.na, anyNA,
is.nan, is.finite is.infinite is.numeric, nchar rep, rep.int rep_len
seq.int (which dispatches methods for "seg"), is.unsorted and xt frm

invisible 291

In addition, is.name is a synonym for is.symbol and dispatches methods for the latter. Simi-
larly, as.numeric is a synonym for as.double and dispatches methods for the latter, i.e., S3
methods are for as .double, whereas S4 methods are to be written for as .numeric.

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and not group generic, (not only for S3 but also S4). Similarly, the . internalGenerics char-
acter vector contains the names of the internal (via . Internal (..)) non-primitive functions
which are internally generic.

Note
For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible (x = NULL)

Arguments

x an arbitrary R object, by default NULL.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

292 is.finite

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) invisible (x)

f1(1) # prints

£2 (1) # does not

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which ele-
ments are finite (not infinite and not missing) or infinite.

Inf and —Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) Inf and NaN (as well as NA) are reserved words in the R language.

Usage

is.finite (x)
is.infinite (x)
is.nan (x)

Inf
NaN

Arguments

x R object to be tested: the default methods handle atomic vectors.

Details

is.finite returns a vector of the same length as x the j-th element of which is TRUE if x [j]
is finite (i.e., it is not one of the values NA, NaN, Inf or —Inf) and FALSE otherwise. Complex
numbers are finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the j-th element of which is TRUE if x []
is infinite (i.e., equal to one of Inf or —Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. One of these is used for the numeric
missing value NA, and is.nan is false for that value. A complex number is regarded as NaN if
either the real or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors
are considered not to be NaN.

All three functions accept NULL as input and return a length zero result. The default methods accept
character and raw vectors, and return FALSE for all entries. Prior to R version 2.14.0 they accepted
all input, returning FALSE for most non-numeric values; cases which are not atomic vectors are
now signalled as errors.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

is.finite 293

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

Computations involving NaN will return NaN or perhaps NA: which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
https://en.wikipedia.org/wiki/NaN.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi:10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.html.

The C99 function isfiniteisused for is.finite.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic, double.

Examples

pi / O ## Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0 # Inf
1/0 - 1/0 # NaN

stopifnot (
1/0 == Inf,
1/Inf ==

)

sin (Inf)

cos (Inf)

tan (Inf)

https://en.wikipedia.org/wiki/NaN
https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

294 is.language

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage
is.function (x)
is.primitive (x)

Arguments

x an R object.

Details

is.primitive (x) tests if x is a primitive function, i.e, if typeof (x) is either "builtin"
or "special".

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function (1) # FALSE

is.function (is.primitive) # TRUE: it is a function, but

is.primitive (is.primitive) # FALSE: it's not a primitive one, whereas
(

is.primitive (is.function) # TRUE: that one xisx
is.language Is an Object a Language Object?
Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language (x)

Arguments

X object to be tested.

is.object 295

Note

A name is also known as ‘symbol’, from its type (t ypeof), see is.symbol.

If typeof (x) == "language", then is.language (x) is always true, but the reverse does
not hold as expressions or names y also fulfill is.language (y), see the examples.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

as.name ("Jim"),

11 <= list(a = expression(x"2 - 2xx + 1), b =
= call("sin", pi))

c = as.expression(exp(l)), d
sapply (11, typeof)
sapply (11, mode)
stopifnot (sapply (11, is.language))

is.object Is an Object ‘internally classed’?

Description

A function mostly for internal use. It returns TRUE if the object x has the R internal OBJECT
bit set, and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and
removed when that attribute is removed, so this is a very efficient way to check if an object has a
class attribute. (S4 objects always should.)

Note that typical basic (‘atomic’, see is.atomic) R vectors and arrays x are not objects in the
above sense as attributes (x) does nof contain "class".

Usage

is.object (x)

Arguments

X object to be tested.

Note

This is a primitive function.

See Also

class, and methods.

isS4.

Examples

is.object (1) # FALSE
is.object (as.factor(1:3)) # TRUE

296

is.recursive

is.recursive

Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is of an atomic type and FALSE otherwise. is.atomic (NULL)
returns FALSE since R version 4.4.0.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic (x)
is.recursive (x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic types ("logical", "integer",

"complex", "character" and "raw").

"numeric",

Most types of objects are regarded as recursive. Exceptions are the atomic types, NULL, symbols (as
given by as.name), S4 objects with slots, external pointers, and—rarely visible from R—weak
references and byte code, see t ypeof.

It is common to call the atomic types ‘atomic vectors’, but note that is.vector imposes further
restrictions: an object can be atomic but not a vector (in that sense).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

is.list, is.language,etc, and the demo ("is.things™").

Examples

require (stats)

is.a.r <— function (x)

is.
is.
is.
is.
is.
is.
is.

(U VR VR R R TR

r(
r(
r(
.r(
r(
r(
r(

c(a =1, b = 3))
list(
list(
1m)

Yy ~ X)
expression (x+1))
quote (exp))

1
))
2))

e

c(is.atomic(x), is.recursive(x))

TRUE FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE - a list is a list
TRUE
TRUE
TRUE
TRUE
FALSE

Wadsworth &

is.single 297

is.a.r (NULL) # FALSE FALSE

Reproduce pre-4.4 behavior of is.atomic()
is.atomicN <- function(x) is.atomic(x) || 1s.null (x)
is.atomicN (NULL) # TRUE

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single (x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted (in increasing order), without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments
X an R object with a class or a numeric, complex, character, logical or raw vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.

Details

is.unsorted is generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods.

298 ISOdatetime

Value

A length-one logical value. All objects of length O or 1 are sorted. Otherwise, the result will be
NA except for atomic vectors and objects with an S3 class (where the >= or > method is used to
compare x [1] with x[1-1] for i in 2:length (x)) or with an S4 class where you have to
provide a method for is.unsorted ().

Note
This function is designed for objects with one-dimensional indices, as described above. Data
frames, matrices and other arrays may give surprising results.

See Also

sort, order.

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to create date-times from numeric representations.

Usage

ISOdatetime (year, month, day, hour, min, sec, tz = "")

ISOdate (year, month, day, hour = 12, min = 0, sec = 0, tz = "GMTI")
Arguments

year,month, day
numerical values to specify a day.
hour, min, sec numerical values for a time within a day. Fractional seconds are allowed.

tz a time zone specification to be used for the conversion. "" is the current time
zone and "GMT" is UTC. Invalid values are most commonly treated as UTC, on
some platforms with a warning.

Details

ISOdatetime and ISOdate are convenience wrappers for st rpt ime that differ only in their
defaults and that ISOdate sets UTC as the time zone. For dates without times it would normally
be better to use the "Date" class.

The main arguments will be recycled using the usual recycling rules.

Because these make use of st rpt ime, only years in the range 0: 9999 are accepted.

Value

An object of class "POSIXct".

See Also

DateTimeClasses for details of the date-time classes; st rptime for conversions from character
strings.

isS4 299

isS4 Test for an S4 object

Description

Tests whether the object is an instance of an S4 class.

Usage

isS4 (object)

asS4 (object, flag = TRUE, complete = TRUE)

asS3 (object, flag = TRUE, complete = TRUE)
Arguments
object Any R object.
flag Optional, logical: indicate direction of conversion.
complete Optional, logical: whether conversion to S3 is completed. Not usually needed,
but see the details section.
Details

Note that i sS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package.

asS3 uses the value of complete to control whether an attempt is made to transform object
into a valid object of the implied S3 class. If complete is TRUE, then an object from an S4 class
extending an S3 class will be transformed into an S3 object with the corresponding S3 class (see
S3Part). This includes classes extending the pseudo-classes array and matrix: such objects
will have their class attribute set to NULL.

isS4 is primitive.

Value
i1sS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 and asS3 will turn this flag on or off, and asS3 will set the class from the objects
.S3Class slot if one exists. Note that asS3 will not turn the object into an S3 object unless
there is a valid conversion; that is, an object of type other than "S4" for which the S4 object is an
extension, unless argument complete is FALSE.

See Also
is.object for a more general test; Introduction for general information on S4; Classes_Details
for more on S4 class definitions.

Examples

isS4 (pi) # FALSE
isS4 (getClass ("MethodDefinition")) # TRUE

300 isSymmetric

isSymmetric Test if a Matrix or other Object is Symmetric (Hermitian)

Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented, where a complex matrix Z must be “Hermitian” for isSymmetric (Z) to be true, and
(since R >=4.5.0), isSymmetric (z, trans ="T") checks for “simple” symmetry.

Usage

isSymmetric (object, ...)
S3 method for class 'matrix'
isSymmetric (object, tol = 100 x .MachineS$Sdouble.eps,

toll = 8 * tol, trans = "C", ...)
Arguments
object any R object; a mat rix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric
toll numeric scalar >= 0. isSymmetric.matrix () ‘pre-tests’ the first and last
few rows for fast detection of ‘obviously’ asymmetric cases with this tolerance.
Setting it to length zero will skip the pre-tests.
trans a single character, only relevant for a complex matrix Z: if itis "C" (as
by default), Conj (t (Z)) must be the same as Z whereas otherwise (typically
itis "T") t (Z) must equal z. The argument name is inherited from LAPACK.
further arguments passed to methods; the matrix method passes these to
all.equal. If the row and column names of object are allowed to differ
for the symmetry check do use check.attributes = FALSE!
Details

The mat rix method is used inside eigen by default to test symmetry of matrices up fo rounding
error, using all.equal. It might not be appropriate in all situations.

Note that a matrix m is only symmetric if its rownames and colnames are identical. Consider
using unname (m) .

Value

logical indicating if object is symmetric or not.

See Also

eigen which calls 1sSymmetric when its symmetric argument is missing.

jitter

Examples

isSymmetric (D3 <- diag(3)) # -> TRUE

D3[2, 1] <= l1le-100

D3

isSymmetric (D3) # TRUE

isSymmetric (D3, tol = 0) # FALSE for zero-tolerance

Complex Matrices — Hermitian or not

z <—- sqgrt (matrix(-1:2 + 0i, 2)); 2 <- t(Conj(z)) %=*%
Z2t72 <—- t(z) %*% z

7 ; 7tZ

isSymmetric (Z) TRUE

isSymmetric (Z + 1) # TRUE

=

301

isSymmetric(Z + 11) # FALSE -- a Hermitian matrix has a *realx diagonal

colnames (D3) <- c("X", "y", "z")

isSymmetric (D3) # FALSE (as row and column names differ)
isSymmetric (D3, check.attributes=FALSE) # TRUE (as names are not checked)

jitter Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter (x, factor = 1, amount = NULL)

Arguments
x numeric vector to which jitter should be added.
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default is
factor = z/50.
Default (NULL): factor = d/5 where d is about the smallest difference be-
tween x values.
Details

The result, say r,is r <- x + runif (n, —a, a) wheren <- length (x) and a is the amount

argument (if specified).

Let z <—-max (x) —min (x) (assuming the usual case). The amount a to be added is either pro-

vided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <— factor * z/50 (same as S).

If amount is NULL (default), we set a <— factor = d/5 where d is the smallest difference

between adjacent unique (apart from fuzz) x values.

302 kappa

Value
jitter (x, ...) returns a numeric of the same length as x, but with an amount of noise added
in order to break ties.

Author(s)
Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round (jitter (c(rep(l, 3), rep(l.2, 4), rep(3, 3))), 3)
These two 'fail' with S-plus 3.x:

jitter (rep (0, 7))

jitter (rep (10000, 5))

kappa Compute or Estimate the Condition Number of a Matrix

Description

The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa () computes by default (an estimate of) the 2-norm condition number of a matrix or of the
R matrix of a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be
shown to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond () computes an approximation of the reciprocal condition number, see the details.

Usage

kappa(z, ...)

Default S3 method:

kappa(z, exact = FALSE,
norm = NULL, method = c("gr", "direct"),
inv_z = s